# 2022 Five Year Plan of Service 

2023 through 2027

| Prepared by: | Evan Edwards, P.E. |
| :--- | :--- |
|  | Manager of System Engineering |
|  | Dax Berven, P.E. |
|  | Senior Engineer |

Approved by:


Steve Hunter, P.E.
Senior Director of Engineering \& Operations/Assistant General Manager
Commission Date: August 23, 2022

# [This Page Intentionally Left blank\} [For Two Sided Printing] 

## Table of Contents

Page
Executive Summary ..... 1
Purpose ..... 5
System Overview ..... 5
Introduction ..... 6
Study Area ..... 7
Historical Peaks ..... 9
System Peak Forecast ..... 9
Customer Growth ..... 12
Feeder Growth ..... 13
Feeder Peak Forecast ..... 14
Bay Peak Forecast ..... 14
System Performance Criteria ..... 15
Voltage Criteria ..... 15
Equipment Loading Criteria ..... 15
Distribution Efficiency Criteria ..... 16
Reliability Criteria ..... 16
Load Flow Analysis ..... 17
Contingency Switching Plan ..... 17
Project Recommendations ..... 18
Appendix A, Projects
Table A1, Distribution Projects ..... 1
Distribution Project Descriptions ..... 4
Table A2, Substation Projects ..... 14
Substation Project Descriptions ..... 16
Distribution Project Overview Maps
Distribution Project Detail Maps
Appendix B, Feeder Peaks
Table B1, Feeder Non-Coincidental Peaks - Winter ..... 1
Table B2, Feeder Non-Coincidental Peaks - Summer ..... 5
Table B3, Feeder Metered Peak Amps Winter - 2021-2022 ..... 9
Table B4, Feeder Metered Peak Amps Winter - 2020-2021 ..... 10
Table B5, Feeder Metered Peak Amps Summer - 2021 ..... 11
Table B6, Feeder Metered Peak Amps Summer - 2020 ..... 12
Appendix C, Bank Peaks
Table C1, Bank Loading - Winter ..... 1
Table C2, Bank Loading - Summer ..... 2
Table C3, Bank Peaks - Winter 2021-2022 ..... 3
Table C4, Bank Peaks - Winter 2020-2021 ..... 4
Table C5, Bank Metered Peak Amps Summer - 2021 ..... 5
Table C6, Bank Metered Peak Amps Summer - 2020 ..... 6
Appendix D, Customer GrowthCustomer Growth Overview1
Table D1, Customer Growth Locations ..... 6
Customer Growth Locations - Maps
Table D2, Rate Schedule Count by FeederNew Customers - Maps
Appendix E, Equipment \& Conductor Ratings
Table E1-E7, Summary of Equipment Ratings
ED-060, Conductor Ampacity Tables 1-7
Appendix F, Substation and Feeder Capability Sheets
Appendix G, Capital Planning Strategic Discussion (June 13, 2017) Presentation

## Executive Summary

The Five Year Plan of Service (Plan) supports the District's mission to provide a reliable and efficient electrical system. In accordance with Administrative Directive No. 24, the Plan is completed bi-annually. The primary purpose of the Plan is to identify and prioritize system improvement projects that are required during the upcoming five year period so the electrical system will continue to provide satisfactory service under projected peak loading during both normal and outage contingency conditions.

The Plan process involves analyzing the system performance at peak loading, identifying deficiencies, planning for customer growth, and recommending projects to support the structured development of the electrical system over the next five years. From this analysis, projects are recommended to ensure compliance with system performance criteria, such as service voltage and equipment loading limits. Projects are also recommended based on specific knowledge of future development, system reliability improvements and outage contingency improvements. The recommended project list, including cost estimates, is the final output of the Plan and is an important input to the District's capital requirements planning.

The majority of recommendations identified by the 2022 Plan are focused on projects to upgrade existing substation facilities, and to improve the distribution facilities on the edges of the system, in the areas of Red Mountain, Badger Canyon, and East Kennewick. The following table summarizes the annual project costs by project type.

Table 1 - Total Project Cost by Type (\$K by Year)

| Project Type | 2023 | 2024 | 2025 | 2026 | 2027 | $\begin{gathered} \text { 2023-2027 } \\ \text { Total } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| New/Upgraded Substations | - | - | - | - | - | \$2,771 |
| Edison Street (Kennewick) | - | - | - | - | 2771 | - |
| Metalclad Switchgear Rep. | 1056 | - | 1069 | - | - | \$2,125 |
| Misc. Substation Upgrades | 1144 | 629 | 446 | 595 | 267 | \$3,081 |
| Distribution Improvements | 2248 | 1215 | 1348 | 1215 | 1406 | \$7,432 |
| Cable Replacement | 1500 | 1500 | 1500 | 1500 | 1500 | \$7,500 |
| Plan Total | \$5,948 | \$3,344 | \$4,363 | \$3,310 | \$5,944 | \$22,909 |

Projects identified in the first two years of the plan (2023-2025) are typically required by existing loading or contingency conditions or imminent customer projects that are well along in development. Projects in the last three years (2025, 2026, and 2027) are either less certain or less critical at this time or are delayed due to logistical factors, such as needing to complete other projects first. Project timing may also be dependent on continued load growth or tentative customer projects as anticipated at this time. Faster than anticipated growth may accelerate plans for projects and slower growth may allow for deferral.

The system performance has been studied and overall system planning has been considered to develop the list of projects. The recommended projects will help ensure reliable and efficient service to our customers. Following Commission approval of the Plan, the project estimates will be incorporated into the District's financial planning process. Further detail of the substation and distribution projects is provided below.

The substation project costs are listed in further detail in Table 2 below.
Table 2 - Substation Project Costs (\$K by Year)

| Project Type | $\mathbf{2 0 2 3}$ | $\mathbf{2 0 2 4}$ | $\mathbf{2 0 2 5}$ | $\mathbf{2 0 2 6}$ | $\mathbf{2 0 2 7}$ | $\mathbf{2 0 2 3 - 2 0 2 7}$ <br> Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Xfmr Protection | - | 250 | 250 | 394 | 102 | $\$ 997$ |
| 15 kV Breaker Upgrades | 1263 | 55 | 1069 | - | - | $\$ 2,387$ |
| River Station Upgrades | 75 | 75 | 75 | 75 | 75 | $\$ 375$ |
| New Substations | - | - | - | - | 2771 | $\$ 2,771$ |
| Regulator Replacement | 612 | - | - | - | - | $\$ 612$ |
| Misc. Equip. Upgrades | 67 | 25 | 25 | 47 | 25 | $\$ 189$ |
| Misc. SCADA Upgrades | 183 | 224 | 95 | 80 | 65 | $\$ 647$ |
| Plan Total | $\mathbf{\$ 2 , 2 0 0}$ | $\mathbf{\$ 6 2 9}$ | $\mathbf{\$ 1 , 5 1 5}$ | $\mathbf{\$ 5 9 5}$ | $\mathbf{\$ 3 , 0 3 8}$ | $\mathbf{\$ 7 , 9 7 7}$ |

The primary focus for substation upgrade projects is to mitigate the risk associated with a major equipment failure. The District should continue to invest in equipment, such as circuit switchers and protective relaying to minimize the risk of power transformer failures. The installation of differential relay protection provides high speed system protection. Traditional high side fusing will open during faults, though not always fast enough to prevent internal equipment damage. The differential protection also ensures that all three phases operate, preventing single phasing of the substation unit. The Plan also provides upgrade recommendations for aging 15 kV feeder breakers and metalclad switchgear. These upgrades incorporate newer technology that allows for less required maintenance, enhanced SCADA integration, and a reduced risk of failure. An additional benefit is increasing crew safety through the installation of remote racking equipment and controls that allow operating personnel to be located at a safe distance from direct hazard zones during system switching or maintenance activities.

System improvements and contingency support for the Red Mountain and East Kennewick areas are a major focus of the 2022 Plan. The recent construction of Orchard View Bay 2 and Southridge Substation puts the District in good position to meet the near and medium term forecasted load growth in the Vista Field and Southridge areas as well as providing additional outage contingency support. Badger Canyon is becoming more constrained during contingency support as development continues. While the construction of Badger Canyon substation is beyond the timeline of the 2022 Plan this capacity expansion will be required in the medium to long term if growth continues. The District needs to identify and acquire property in the Badger Canyon area and move forward with an interconnection request with BPA.

The District already has property for a future substation that will be constructed to support Vista Field re-development long term. The site referred to as the Edison Street Substation has been included in an already submitted BPA transmission interconnection application. Construction is tentatively planned for 2027 but will depend on actual development of loads in Vista Field.

The District has property for a future substation that will be constructed to support the middle to western end of the Southridge/Bob Olson Pkwy. area and the Christenson Rd UGA area. Construction is currently planned beyond the timeline of the 2022 Plan but this may accelerate if a commercial "anchor tenant" begins development.
The Plan also contains projects targeted for the large agricultural irrigation substations ("River Stations") in the southern portion of the county. These substations and circuits were not specifically studied as part of this Plan, instead they were developed as a result of the Horse Heaven Hills Transmission Study and a follow up study, the Transmission Reliability Improvement Project (TRIP). The projects are listed in the Plan to provide a complete picture of all substation projects. These upgrades include connecting the river stations to the fiber network.

The Plan recommends the completion of certain distribution system projects which are summarized in Table 3 below.

Table 3 - Distribution Project Costs (\$K by Year)

| Project Type | $\mathbf{2 0 2 3}$ | $\mathbf{2 0 2 4}$ | $\mathbf{2 0 2 5}$ | $\mathbf{2 0 2 6}$ | $\mathbf{2 0 2 7}$ | $\mathbf{2 0 2 3 - 2 0 2 7}$ <br> Total |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Kennewick West | - | - | 413 | 471 | 232 | $\$ 1,116$ |
| Kennewick East | 1223 | 723 | 935 | 743 | 845 | $\$ 4,470$ |
| Benton City \& Prosser | 915 | 492 | - | - | 329 | $\$ 1,736$ |
| Voltage Optimization | 110 | - | - | - | - | $\$ 110$ |
| Cable Replacement | 1500 | 1500 | 1500 | 1500 | 1500 | $\$ 7,500$ |
| Plan Total | $\mathbf{\$ 3 , 7 4 8}$ | $\mathbf{\$ 2 , 7 1 5}$ | $\mathbf{\$ 2 , 8 4 8}$ | $\mathbf{\$ 2 , 7 1 5}$ | $\mathbf{\$ 2 , 9 0 6}$ | $\mathbf{\$ 1 4 , 9 3 2}$ |

Since the last Plan was completed in 2020, the District has continued to see residential growth, primarily in areas such as Badger Canyon, Hansen Park, Southridge, Vista Field, and the eastern COK UGA/Finley area. Commercial growth has continued as well, especially in the Southridge area, which is anchored by Trios Hospital campus. Projects have been recommended, especially in the first two years, to improve system performance in response to this growth and to ensure continued reliability throughout the system. The majority of the distribution projects are related to improving outage contingency support and feeder planning. Projects have been recommended to improve outage support in the Red Mountain, East Kennewick, and West Kennewick areas. The projects are designed to maximize the District's investments in Benton City, Phillips Substation Bay 4, Sunset Road, and Zephyr Heights Substations by constructing new feeders, reconductoring tie lines, and adding additional line switches.

Ongoing for the 2022 Plan is a focus on completing voltage optimization (VO) projects to support energy conservation efforts. VO is a type of distribution system energy efficiency project that qualifies as a conservation measure under the Washington State Energy Independence Act (Initiative I-937) and is also being promoted by the Bonneville Power Administration. VO projects include upgrades to the District's distribution system in conjunction with optimizing the operating voltage of main feeder circuits depending on the current loading level. By optimizing voltages, the minimum amount of electrical energy is consumed while still meeting industry standards for minimum voltages. Construction for the District's first project was started in 2021 with re-phasing and service drop cleanup efforts. The next phase, installing and operating the capacitor banks, is planned for construction in 2023 for the Kennewick Substation Bay 1 feeders. If the project is deemed successful, it is targeted to review and potentially complete voltage optimization projects every two years, consistent with our conservation planning and completion of the Five Year Plan of Service.

The District's high-voltage underground cable replacement program continues to target segments that have experienced two or more faults and cable meeting certain age and design criteria. In June of 2017, the District decided to eliminate cable rejuvenation as a means of extending underground cable life. Engineering staff analyzed bids received for cable rejuvenation and compared them to costs associated with recent cable replacement projects completed by a District contractor. This analysis indicated that cable replacement using modern boring technology allows difficult to access cables to be replaced economically with new cable in conduit with an expected life of 40 years versus the 25 year warranty offered by the cable rejuvenation contractor. In addition, the District has been experiencing failures of rejuvenated cable well before the 25 year warranty. Cable rejuvenation will only delay ultimate replacement of cables which will likely need to occur within the 40 year life of a new cable. The Plan recommends an annual budget of $\$ 1.5$ million for materials and contractor labor to complete cable replacement efforts through the next five year period. This level of expenditure is needed in order to stay on track with plans to replace more than 30 circuit miles of cable over the next 10 years.

## Purpose

The primary purpose of the Five Year Plan of Service (Plan) is to study the electrical distribution system's ability to provide satisfactory service under projected peak load and outage contingency conditions. The study identifies and prioritizes system improvement projects that are required during the upcoming five year period.

The plan is updated every two years in accordance with Administrative Directive No. 24. The last plan was completed in 2020 and the next plan will be completed in 2024. The plan is reviewed annually to ensure growth is occurring as expected and to ensure planned projects are budgeted and scheduled appropriately.

## System Overview

This section is provided first to clarify the terminology used throughout the report and to establish the context of the study. The distribution facilities referred to in the Plan consist of substations and their medium voltage feeders.

District substations have power transformers that convert 115 kV transmission system voltages to 12.47 kV distribution system voltages. The power transformers are typically rated between 20 and 28 MVA. Substations may have one, two, or three power transformers. Associated with each power transformer is a load tap changer or a voltage regulator that provides voltage regulation to the distribution feeders. Substation power transformers and their associated equipment are often referred to as bays or banks (e.g. Bay 1, Bay 2, etc.) and are identified this way in the study. Each power transformer typically serves three or four feeders.

Feeders are individual circuits that originate in the substation and distribute load carrying capacity to the distribution system at 12.47 kV . A feeder begins with a circuit breaker or recloser, located within the substation, downstream of the power transformer and voltage regulator. Feeders are often referred to by alpha numeric names consisting of a three letter abbreviation of the substation's name, a dash "-", and a pre-assigned feeder number (e.g. ANG-1, ANG-2, GUM-4, KEN-9, etc.). The feeders are identified this way in the study.
"Getaway" conductors connect the substation feeder breaker/recloser to the distribution system. Most getaway circuits are underground, but there are some overhead installations on the system. Main underground feeder lines typically consist of $15 \mathrm{kV}, \mathrm{XLP}$ or EPR insulated, 750 or 1000 kcmil cable. The standard for new main underground feeder lines is triplex, 15 kV , 175 mil EPR insulated, 1000 kcmil cable. Main overhead feeder lines typically consist of 3/0 AWG ACSR, 4/0 AWG ACSR, 336.4 kcmil AAC/ACSR or 556 kcmil AAC bare overhead conductor. The standard for new main overhead lines is typically 336.4 kcmil AAC or 556 kcmil AAC conductors.

## Introduction

This introductory section is intended to provide a brief overview of the Five Year Plan of Service (Plan) process from start to finish. The body of the report includes details of each step of the planning process under the respective heading, starting with a review of the study area and concluding with the project recommendations. For even greater detail, the report often refers to tables, graphs, maps, etc. located in the appendices.

The substations and medium voltage distribution systems that serve the Kennewick, Prosser, and Benton City urban areas within the County are the primary focus. The study does not address the Horse Heaven Hills system, dedicated industrial customers, or small isolated areas within the District where electrical loads are added infrequently.

The Plan process begins with the collection of historical peak loading data for each substation bay and feeder. The feeder peak loads are then adjusted to the planning temperature. The temperature adjusted feeder peaks represent the base year loads to which five years of forecasted load growth is added.

The load growth forecast begins with a review of the most recent Retail Energy Load Forecast and a forecast of the total system peak. The total system growth is then allocated to feeders in the study area. The allocation process involves identifying potential customer growth, such as residential developments and commercial projects, and assigning the future load growth to individual feeders on the distribution system.

After the annual feeder growth has been determined, the feeder peaks are forecasted for the next five years. A manual review is completed to identify feeders that may exceed planning ratings. In addition, the total bay loading is reviewed to ensure that the total of the feeder peak loads does not exceed the bay ratings. Following the manual review, the feeder peaks are input into the District's load flow analysis software and the performance of each feeder is checked against District criteria.

System improvement projects are recommended to correct the problems found by the manual review of the peak load data and the load flow analysis criteria violations. Projects may also be recommended based on specific knowledge of future development, system reliability improvements or outage contingency improvements. The recommended project list, including cost estimates, is the final output of the Plan and is an important input to the District's capital requirements planning.

## Study Area

The study area includes the substations and distribution systems in Kennewick, Benton City, and Prosser. The following District substations are associated with each study area:

## Study Area

- Kennewick West
- Kennewick East
- Benton City
- Prosser
- Cold Creek Area


## Substation Names

Angus, Highlands, Leslie Road, Orchard View, Reata, Southridge, Vista
Ely, Gum Street, Hedges, Kennewick, Phillips Bay 4, Zephyr Heights
Benton City, Sunset Road
Prosser, Riverfront
Cold Creek

The Plan study area does not include all of the District's electrical system or all of the District's service territory. Load growth or reductions in certain areas is sporadic and is not included with our general system growth. These areas are studied separately, on a case by case basis or as changes in load occur. The areas not included in the Plan analysis are:

- 115 kV River/Irrigation Transmission System - Refer to Elcon Associates study:
- July 2016 study, "Transmission System Study"
- April 2014 study, "South County Transmission Reliability Improvement Project (TRIP)".
- River/Irrigation distribution system
- The River system is studied in the Large Irrigator Plan of Service. This study is performed annually to identify system deficiencies on the River system and to work with the Large Irrigators for load growth planning.
- Agrium (Chevron and Phillips Bay 1, 2, \& 3 Substations)
- LIGO and Rattlesnake Mountain service areas (DOE)

Refer to the Study Area map on the following page for an overview of the study area and the excluded areas.


## Historical Peaks

The peak data collected for this study period includes winter 2020/2021, winter 2021/2022 and the summers of 2020 \& 2021. Except where otherwise identified, the historical peaks are non-coincidental peaks, meaning that each bay or feeder may have peaked at a different time or even a different day from the system peak and from other bay or feeder peaks.

Winter and summer peak loads are reviewed in the study. Typically winter loading is the limiting condition for most of our urban distribution system due to the large amount of residential electric appliances and space heating. A few generally commercial areas have summer loading that provides the most severe loading condition. Of the District's 90 feeders, only 14 were identified as summer peaking. This is in line with the District's historical average of summer peaking feeders due.

The feeder peaks are recorded by the District's Supervisory Control and Data Acquisition (SCADA) system. Refer to Appendix B, Tables B1-B6 for the detailed feeder peaks. The substation bay peaks are recorded by Bonneville Power Administration (BPA) meters located within District substations. This data was collected from BPA's meter data management website (MDMR). Refer to Appendix C, Tables C1-C6 for the detailed substation bay peaks.

## System Peak Forecast

The Plan uses a model of our electrical system and corresponding peak loads during extreme weather conditions. The planning temperature is $0^{\circ} \mathrm{F}$ for winter and $104^{\circ} \mathrm{F}$ for summer. When winter temperatures have been mild (above $0^{\circ} \mathrm{F}$ ) or summer temperatures have been mild (below $102^{\circ} \mathrm{F}$ ) or high (above $106^{\circ} \mathrm{F}$ ), a trend line, see Figures $1 \& 2$ below, are required to estimate the load at $0^{\circ} \mathrm{F}$ and $104^{\circ} \mathrm{F}$. These trend lines are created by plotting several peak load points for the last two winters and summers and assumes a linear load vs. temperature relationship. The trend line is used to estimate what the load would be for a temperature of $0^{\circ} \mathrm{F}$ and $104^{\circ} \mathrm{F}$. Traditionally, the trend line peak estimates are increased by $5 \%$ to develop a conservative planning peak for the system and to account for the variability of the trend line estimate.

For the 2022 Plan, the loading for winter 2021/2022 was used as winter 2020/2021 had milder temperatures. The total system peak of 318.8 MW was at a temperature of $17^{\circ} \mathrm{F}$, with the Plan portion of the system peaking at 318.8 MW. The previous winter (2020/2021) system peak was 302.7 MW at a temperature of $18^{\circ} \mathrm{F}$, with the Plan portion of the system peaking at 252.8 MW. While the most recent winter data included data points near $0^{\circ} \mathrm{F}$, there were no sustained cold periods to generate a significant winter peak. Peak data from winter 16-17 was included to generate a better statistical model. This resulted in setting the $0^{\circ} \mathrm{F}$ temperature corrected planning peak at 379.2 MW for the Plan portion of the system. The ratio of the planning peak to the actual peak (379.2/318.8) results in a 1.18 temperature correction factor, which was applied to the feeder peaks.

Figure 1, Load vs. Temperature Analysis


The previous summer (2021) generated a total system peak of 489.6 MW at a temperature of $110^{\circ} \mathrm{F}$ with the Plan portion of the system peaking at 309.7 MW and occurred on June $29^{\text {th }}$ in hour 18. The previous summer (2020) system peak was 437 MW at a temperature of $108^{\circ} \mathrm{F}$, with the Plan portion of the system at peaking at 283.4 MW. Due to the very high ambient temperatures this peak was not ideal and required a temperature correction. This resulted in setting the $104^{\circ} \mathrm{F}$ temperature corrected planning peak at 285.2 MW for the Plan portion of the system. The ratio of the planning peak to the actual peak (285.2/309.7) results in a 0.92 temperature correction factor, which was applied to the feeder peaks.

Figure 2, Load vs. Temperature Analysis


The system peak is forecasted over the next five years so that the total system load growth can be allocated to individual feeders. The system peak forecast uses an annual growth rate of $0.46 \%$ for each of the five years. The methodology for the Retail Energy Load Forecast generates only a single growth rating, instead of low, medium, and high growth rates. A high growth rate over the 2023 to 2027 time period was determined by averaging the difference between the medium and high growth rates over the 2015-2018 time period. This high forecast percentage growth rate was selected over the medium growth rate percentage as this is more in line with the historical medium growth rate that has been used over the past few planning cycles for the Plan portion of the system. The rate selected defines the load growth to be allocated to 5YP feeders (2. MW/year winter, 1.487 MW/year summer). This load growth compares well with the customer growth potential.


Figure 2: Historical and Projected Winter Peak.


Figure 3: Historical and Projected Summer Peak.

## Customer Growth

The District's Retail Energy Load Forecast attempts to forecast the amount of growth expected. The Plan is also concerned about the amount of growth, but is more focused
on determining the location of the proposed load growth so it can be allocated to distribution feeders and substation bays.

During preparation of the Plan, several areas of customer growth potential were examined for their possible impact on the electrical system. An overview of the major areas is provided in Appendix D. Some of these projects are difficult to forecast with regards to expected load and timing, but they could have a significant impact on the distribution system. The progress of each project is continually being monitored.

In addition to the overview of major growth areas, a more detailed list of customer projects has been developed. The customer projects that are currently known to the District's Engineering department are listed in Appendix D, Table D1. Refer to the system maps, also in Appendix D, for the locations of these projects. The main purpose of Table D1 is to determine the potential load growth that should be assigned to an individual feeder. Some of the projects are under construction; others are in the planning phase. In many cases, the projects are done in phases, with one phase under construction and future phases planned. Some of these projects may not materialize and other unforeseen projects may be initiated and completed in the next five years.

For reference purposes, Appendix D, Table D2 is included with the Plan to provide a snapshot of the customer count by rate schedule for each feeder.

## Feeder Growth

Feeder load growth is derived by assigning a percentage of the expected annual system growth to individual feeders. The projected system peak annual load growth of 1.76 MW was diversified by a coincidence factor of $90 \%$ and allocated to the feeder level with a $98 \%$ power factor. The coincidence factor of $90 \%$ increases (1.76 MW / 0.90) the amount of annual load growth to be assigned to the feeders because the total of the feeder noncoincidental peaks would be greater than the system peak. The resulting annual total feeder load increase for the study was 2.0 MVA for winter and 1.487 MVA for summer. This total annual load growth must be allocated amongst the District's 90 feeders included in the study area.

Load growth on the electrical system is non-uniform by nature. The proposed customer growth shown in Table D1 along with staff knowledge of recent load growth is used to allocate a percentage of the total system growth to individual feeders. To determine the percentage allocated to individual feeders, the estimated load growth for each feeder was divided by the total load growth on the system. A general estimate of 4 kVA for a residential unit, 2 kVA for an apartment, and 50 kVA for a general commercial unit was used in these calculations. Estimated loading for new specific commercial services is adjusted based on the best information available to the District at the time of the Plan. Residential and Commercial load growth is assumed across a five year period to allow for development. In the case of Electrical Intensive Loads (EILs) the buildout schedule is modified to align with what the District has experienced with established customers. Larger residential growth areas were given a diversity factor due to the low probability of
all the houses being occupied in the near future. Each $1.0 \%$ assigned to a feeder equals 2.0 kVA of load growth per year in winter and 14.87 kVA of growth in summer. Refer to Table B1 and B2 to determine the percent of system load growth assigned to each feeder.

## Feeder Peak Forecast

The feeder historical peaks, temperature adjusted peaks, growth percentages and feeder projected peaks are summarized for winter and summer in Appendix B, Tables B1 and B2 respectively.

Generally, the District's feeders have a winter rating of approximately $12,000 \mathrm{kVA}$. The planning rating of each feeder is $8,000 \mathrm{kVA}$, which leaves a reserve capacity of 4,000 kVA per feeder. The reserve capacity is equal to one-half the load that would be served by any adjacent feeder. Therefore, in the event of a feeder outage, the feeder's load can be transferred to any two adjacent feeders. District practice is to begin making plans to reduce load on feeders that are projected to reach the 8,000 kVA planning rating. Feeders exceeding 8,000 kVA are highlighted in red in Tables B1 and B2.

There is only one distribution feeder that exceeds the $8,000 \mathrm{kVA}$ maximum winter planning rating during the next five years. Reata feeder RTA-2 continues to see significant residential growth mostly attributed to winter heating load. Projects to provide short to medium term feeder support to the RTA-2 utilizing RTA-1 are anticipated to be completed by fall 2022. Long term growth will require additional system capacity to be provided to the area.

## Bay Peak Forecast

The bay/bank historical peaks, projected peaks, rating, and percentage loading are summarized for winter and summer in Appendix C, Tables C1 and C2 respectively. The bay projected peaks are the summation of the feeder non-coincidental projected peaks, multiplied by a calculated coincidence factor, to provide a bank loading estimate used to flag any issues.

The District begins planning for corrective action when the projected peak load of substation power transformers or regulators exceeds $90 \%$ of the equipment's normal rating. Each substation bay and feeder was reviewed to update normal and emergency capabilities during winter and summer loading conditions. A summary of each substation's capability is included in Appendix F.

Prosser Bay 2 is the only substation bay that exceeds the $90 \%$ bay normal loading criteria. In addition to District feeders PSR-4, PSR-5, and PSR-6, Prosser Bay 2 also energizes several Benton REA (BREA) feeders. The BREA feeders accounted for $44 \%$ and $48 \%$ of the overall bay loading respectively during the planning cycle peak winter and summer loads. The BREA load has peaked as high as $57 \%$ of the overall bay loading during summer loads in past planning cycles. The District has engaged with BREA to evaluate
equipment replacement to increase capacity or BREA load reduction options to relieve the loading condition at Prosser Bay 2. BREA is currently slated to energize their Huard substation north of Prosser Fall 2022. BREA is also in the design process for installing their own power transformer in their laydown yard directly adjacent to Prosser substation. This project is currently scheduled for energization in spring 2023 and would remove the BREA from Prosser bay 2.

Projects and/or switching have been completed over previous planning cycles to relieve the loading on bays that previously exceeded $90 \%$ normal loading criteria.

## System Performance Criteria

## Voltage Criteria

The District has developed criteria per ANSI Std. C84.1 for the distribution system to ensure that customers receive reliable service. System voltage criteria, on a 120 volt base, are listed below:

- During normal system operation, with a 124 volt bus voltage, the system shall be designed to limit the maximum voltage to 126 and the voltage drop on the primary distribution lines to less than seven volts, corresponding to a minimum primary voltage level of 117 volts. This allows for a three volt drop through the distribution transformer and customer secondary for a minimum service voltage of 114 V at the customer's meter. (ANSI Std. C84.1 Voltage Range A)
- During outage contingency operation, with a 124 volt bus voltage, the system shall be designed to limit the maximum voltage to 127 and the voltage drop on the primary distribution lines to less than ten volts, corresponding to a minimum primary voltage level of 114 volts. This allows for a four volt drop through the distribution transformer and customer secondary for a minimum service voltage of 110 V at the customer's meter. (ANSI Std. C84.1 Voltage Range B)


## Equipment Loading Criteria

In addition to the system performance criteria, the District has developed criteria for equipment loading. Equipment has been assigned summer and winter normal and emergency ratings to limit operating temperatures to below levels that would damage or accelerate aging of the equipment.

The District begins planning for corrective action when the loading and/or the projected load exceeds $90 \%$ of the equipment's rating. High feeder loading can also create the need for substation facilities, as there are physical constraints that often limit the District's ability to extend or install new feeders.

The temperature and ampacity ratings of the major electrical components are listed in Appendix E.

## Distribution Efficiency Criteria

The District has traditionally been concerned about distribution efficiency; however, there is an increasing focus on the conservation savings potential associated with distribution efficiency, which will require much greater scrutiny of system performance to achieve the savings potential. The District is currently working with Bonneville Power Administration (BPA) to evaluate and possibly implement Voltage Optimization for conservation credit toward I-937 compliance. The target criteria to qualify for this credit are outlined in BPA's Simplified Voltage Optimization (VO) Measurement and Verification Protocol. These criteria will be implemented as the District implements Voltage Optimization:

- Feeder-Source Power Factor Minimum (one hour) > 96\%
- Feeder-Source Power Factor Average (annual) > 98\%
- Feeder-Source Unbalance < 15\%
- Feeder-Source Neutral Current < 40A
- Voltage Control Zone Maximum Adjusted Voltage Drop < 3.3\%
- Secondary Maximum Allowed Voltage Drop < 4.0\%
- Maximum Voltage Drop Variance between multiple Feeders < 2V
- Primary Line Minimum Hourly Voltage > [114V + 1/2 bandwidth + secondary maximum allowable voltage drop]
- Primary Line Maximum Hourly Voltage < [126V - $1 / 2$ bandwidth]


## Reliability Criteria

Outage information is logged into the District's Outage Management System (OMS). Every outage that occurs has an associated cause, region, number of customers affected and number of customer minutes out. This data is examined quarterly at the feeder level to determine the worst performing feeders. Feeders are ranked in order out over a two year rolling window. The feeders SAIFI (system average interruption frequency), SAIDI (system average interruption duration), and CAIDI (customer average interruption duration) values are ranked and those rankings averaged to identify the 10 worst performing. The 10 worst feeders generally have SAIFI and SAIDI ratings that are at least double the District's set goals. Identification of the worst performing circuits using reliability indices is an industry best practice consistent with APPA's Reliable Public Power Provider (RP3) recommendations. These 10 feeders were examined for outage trends to see what improvements could be made to decrease the numbers of customers out or the customer minutes out and increase their reliability.

The largest incidents for each of these 10 feeders were examined to see if improvements could be made to prevent similar outages in the future. It was discovered that some large outages could have been reduced in scale if the feeder was better sectionalized by installing fuses on lateral taps and through installation of mid-line reclosers. Fusing previously un-fused laterals limits the exposure to the main line from faults that occur on these laterals. The addition of mid-line reclosers limits the exposure to the feeder breaker
for main line faults that occur further out from the substation on the main line. The installation of additional line switches allows for more precise fault sectionalizing. All of these actions will decrease both the SAIFI and SAIDI rating for that particular feeder over time.

## Load Flow Analysis

The District utilizes electric system modeling and analysis software as an integral part of the Plan study. The two pieces of software are MilSoft Utility Solutions' WindMil and LightTable. The WindMil model includes the conductors and equipment on the primary distribution system, except for the distribution transformers. System performance criteria, equipment ratings and other system options are configured to reflect District standards.

The primary input to the WindMil model is the projected feeder peaks. Once the feeder peaks are loaded, the total peak load is allocated to the feeder's line sections and a load flow analysis is ran to evaluate loading and voltage levels on the feeder. Lines can be switched to simulate system performance during outage contingency operation. The effect of system improvement projects, such as regulator bank installations or reconductor projects can be evaluated.

In accordance with the system performance criteria, WindMil was configured to flag any line sections where the voltage was less than 117 volts during normal peak operation and less than 114 volts during outage contingency operation. In addition, equipment that exceeded the allowable loading criteria was also flagged. Note: Substation equipment is not included in the model and is evaluated manually.

## Contingency Switching Plan

The 2022 Plan included an additional effort to update the District's outage switching plan, which was last updated by the 2020 Plan. WindMil was used to evaluate outage switching scenarios and bank loading utilizing base loads in the winter and summer models.

The District has been and remains dedicated to constructing and maintaining a robust grid that allows for system recovery should any one bay in the study area (Kennewick, Benton City, and Prosser) be removed from service. This $\mathrm{N}-1$ contingency planning was performed for both the peak summer and winter conditions. For stations that have multiple bays, it was assumed that the remaining bay(s) remained energized. In a typical case this would require the peak loads from 3-4 feeders to be served by other inservice feeders. The 2020 Plan determined that there were 5 cases in which all feeders of a bay could not be picked up in the event of a bay outage. In the 2022 plan, 5 cases were identified that require the use of the District's mobile substation. These are Philips Bay 4 (summer), Riverfront (winter and summer), and Sunset Road (winter and summer). Projects have been identified to correct these issues.

## Project Recommendations

The primary output of the Plan is the project recommendations. Refer to Appendix A, Table A1 (Distribution Projects) and Table A2 (Substation Projects) for the recommended project lists and associated project cost estimates. Also refer to Appendix A for detailed project descriptions, overall area maps and detailed maps for the distribution projects.

The project list generated by the Plan is a significant input to the District's capital planning process. Typically, projects identified in the first two years are required by existing loading conditions or imminent customer projects that are well along in development. Projects identified in the third through fifth years are usually dependent on continued load growth or tentative customer projects. Faster than anticipated growth may accelerate plans for projects and slower growth may allow the District to defer projects. Projects over $\$ 100,000$ will come before Commission again for job approval per District policies.

## FAC-002 Coordination of Plans for New Facilities

The District complies with the requirements of NERC standard FAC-002, Coordination of Plans for New Facilities when planning for the construction of recommended projects. Specifically, all District projects involving the integration of generation and/or transmission facilities will be planned and coordinated in cooperation with the Bonneville Power Administration (BPA).

When requested by BPA, the District will provide information and assistance to support any system studies recommended by BPA to evaluate the reliability impacts of the new facilities and their connections on the BPA transmission system. Assessments may include steady-state, short-circuit, and dynamic studies as necessary to evaluate system performance in accordance with applicable reliability standards. When applicable the District will include copies of report summaries and/or cross-references to BPA studies in our five year plan of service study report to provide evidence of proper project planning and coordination.

It is BPA's responsibility to ensure compliance with NERC Reliability Standards and applicable regional, sub-regional, power pool, and BPA planning criteria and facility connection requirements.

At this time, the District has the following Line Load Interconnection Requests (LLIR) submitted to BPA and is working with BPA to perform the related studies:

## \#L0506 - Weber Canyon to Prosser, Feasibility Study, BPUD Contract \#22-21-64

Additionally, COR is planning a new substation in the Dallas Rd. area. COR previously built the transmission line extension from near Reata substation to the proposed Dallas Rd. substation site and are currently finishing the BPA interconnection process for final tie in. The District has partnered with COR on this transmission line and plans to extend
it from COR's proposed Dallas Rd. substation to the existing transmission line feeding Sunset Road substation that is currently served from BPA's Red Mountain substation. This will alleviate a long standing reliability concern as Leslie Rd. \& Reata substations are currently energized via a single source on a radial transmission line from BPA Badger Mountain switchyard and Sunset Road is currently energized from a single source radial transmission line from BPA Red Mountain switchyard. It is the District's preference to have loop feed capability at a substation where practicable.

While partnering with COR on Dallas Rd. (similar to Leslie Rd.) is being considered, it would be more advantageous to pursue acquisition of substation property in Badger Canyon to place the additional capacity adjacent to the load it would be serving. Necessary feeder upgrades would be less extensive, more cost effective, have less line exposure from a reliability standpoint, and load balancing between new and existing feeders would be more easily accomplished. Continuing to coordinate with BPA on the future Weber to Badger line may yield an opportunity to locate the substation along the path, minimizing the required transmission

# [This Page Intentionally Left blank\} [For Two Sided Printing] 

## Appendix A

## Projects

# [This Page Intentionally Left blank\} [For Two Sided Printing] 

Table A1 - Distribution Projects

| POS\# | Feeder, Project Description | Qty. | Cost Estimate (\$K) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (WO\#) |  | (1000') | Mat. | Lab. | Total |
| 2023 |  |  |  |  |  |
| 2 | Misc. feeder, underground cable replacement, and getaway upgrades - Contract Labor | n/a | 300 | 1200.0 | 1500.0 |
| 11 | GUM-4, HED-3, recond. 3/0, Bowles Rd. (POS 2010) | 10.8 | 210.0 | 142.6 | 352.6 |
| 12 | GUM-4, recond. \#4, S. Oak St. (POS 2010) | 5.3 | 236.3 | 116.3 | 352.6 |
| 13 | GUM-4, recond. \#4, Game Farm Rd. (POS 2010) | 10.5 | 181.2 | 336.3 | 517.5 |
| 58 | BEC-3, new feeder to east, tie to SSR-1 (POS 2012) | 16.13 | 465.6 | 449.4 | 915.0 |
| 83 | Voltage Optimization - Kennewick Feeders | n/a | 85 | 25.0 | 110.0 |
| 2023 Total |  |  | \$1,478.1 | \$2,269.6 | \$3,747.7 |


| $\begin{aligned} & \text { POS\# } \\ & \text { (WO\#) } \end{aligned}$ | Feeder, Project Description | $\begin{aligned} & \hline \text { Qty. } \\ & \left(1000^{\prime}\right) \end{aligned}$ | Cost Estimate (\$K) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Mat. | Lab. | Total |
| 2024 |  |  |  |  |  |
| 2 | Misc. feeder, underground cable replacement, and getaway upgrades - Contract Labor | n/a | 300 | 1,200 | 1500 |
| 36a | SSR-3, relocate and reconductor (POS 2010) | 9 | 109.8 | 42.8 | 152.6 |
| 36b | SSR-3, relocate and reconductor (POS 2010) | 9 | 118.9 | 220.5 | 339.4 |
| 20 | HED-4, recond. 3/0, Perkins Rd. (POS 2010) | 16.1 | 250.0 | 201.0 | 451.0 |
| 21 | HED-4, recond. \#6 CU along Bernath Rd. and new tie to GUM-4. (POS 2010) | 8 | 226.2 | 319.9 | 546.1 |
| 81 | PHI-8, new feeder, recond. Cochran Rd. (POS 2014) | 7.8 | 213.7 | 300.9 | 514.6 |
| 102 | HED-4 Get-away Reconductor (POS 2018) | 0.25 | 70.3 | 42.9 | 113.2 |
| 2024 Total |  |  | \$1,288.9 | \$2,328.0 | \$3,616.9 |


| POS\#(WO\#) | Feeder, Project Description | $\begin{aligned} & \text { Qty. } \\ & \left(1000^{\prime}\right) \end{aligned}$ | Cost Estimate (\$K) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Mat. | Lab. | Total |
| 2025 |  |  |  |  |  |
| 2 | Misc. feeder, underground cable replacement, and getaway upgrades - Contract Labor | n/a | 300 | 1,200 | 1500 |
| 15 | HIG-4, recond. 3/0, W. 10th Ave. (POS 2010) | 3.2 | 152.2 | 157.9 | 310.1 |
| 41 | ZEH-4, new OH tie to GUM-4 at Game Farm (POS 2010) | 8 | 183.8 | 138.2 | 322.0 |
| 54 | ZEH-3, recond. 1/0 for GUM-3 load transfer <br> (POS 2012) | 3.8 | 126.1 | 125.9 | 252.0 |
| 105 | KEN-9, recond 3/0 on Washington St (POS 2018) | 4.5 | 134.2 | 227.1 | 361.3 |
| 122 | ANG-3, recond. 3/0, Clearewater (POS 2022) | 1.5 | 67.7 | 35.3 | 103.0 |
| 2025 Total |  |  | \$964.0 | \$1,884.4 | \$2,848.4 |


| $\begin{aligned} & \text { POS\# } \\ & \text { (WO\#) } \end{aligned}$ | Feeder, Project Description | $\begin{aligned} & \text { Qty. } \\ & (1000 \text { ') } \end{aligned}$ | Cost Estimate (\$K) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Mat. | Lab. | Total |
| 2026 |  |  |  |  |  |
| 2 | Misc. feeder, underground cable replacement, and getaway upgrades - Contract Labor | n/a | 300 | 1,200 | 1500 |
| 14 | GUM-4, new OH tie HED-3, Game Farm to Terrill Rd. (POS 2010) | 3.2 | 125.5 | 142.9 | 268.4 |
| 38 | V1 to V6, UG feeder tie across W. Quinault Ave. (POS 2010) | 1.2 | 164.0 | 64.6 | 228.6 |
| 39 | ZEH-1, new OH line and UG tie with STH-3 (POS 2010) | 5.1 | 134.6 | 173.6 | 308.2 |
| 56 | ELY-8, recond. 3/0, near Ely St. (POS 2012) | 1.5 | 86.8 | 79.8 | 166.6 |
| 120 | ANG-4, recond. 3/0 Clearwater. (POS 2022) | 2.3 | 54.2 | 106.8 | 161.0 |
| 121 | HLS-7, recond. 4/0 Clearwater. (POS 2022) | 1.5 | 12.0 | 69.7 | 81.7 |
| 2026 Total |  |  | \$877.1 | \$1,837.4 | \$2,714.5 |


| $\begin{aligned} & \text { POS\# } \\ & \text { (WO\#) } \end{aligned}$ | Feeder, Project Description | $\begin{gathered} \text { Qty. } \\ (1000 \text { ) } \end{gathered}$ | Cost Estimate (\$K) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Mat. | Lab. | Total |
| 2027 |  |  |  |  |  |
| 2 | Misc. feeder, underground cable replacement, and getaway upgrades - Contract Labor | n/a | 300 | 1,200 | 1500 |
| 19 | HED-3, recond. \#4, Terril Rd. (POS 2010) | 7 | 123.0 | 171.1 | 294.1 |
| 22 | KEN-8, convert OH to UG across fairgrounds (POS 2010) | 2 | 162.5 | 46.6 | 209.1 |
| 79 | RTA-2, recond. Badger Rd., L766A to L80R (POS 2014) | 5.3 | 88.8 | 71.8 | 160.6 |
| 95 | HED-2, recond \#266.8, Finley Rd (POS 2016) | 4.5 | 166.3 | 139.8 | 306.1 |
| 116 | LES-1, Country Meadows alt. feed. (POS 2020) | 1.4 | 37.5 | 33.8 | 71.3 |
| 113 | ELY-2 recond. Garfield St L138A to 829123405 (POS 2018) | 0.5 | 8.8 | 27.3 | 36.1 |
| 119 | PSR-3 reconductor (POS 2020) | 1.9 | 204.8 | 124.2 | 329.0 |
| 2027 Total |  |  | \$1,091.7 | \$1,814.6 | \$2,906.3 |
|  |  |  |  |  |  |
| 2023-2027 Total |  |  | \$5,699.8 | \$10,134.0 | \$15,833.8 |

## Distribution Project Descriptions

\# 00 - Misc. feeders, future system improvements. This project is intended to account for system improvement projects that are not specifically identified in the current Five Year Plan, but that may become necessary in the future years. This project may be used as a placeholder in the third through fifth years.
\# 02 - Misc. feeders, underground cable replacement, and getaway upgrades. This project is intended to account for the annual system wide replacement of aging underground cable. The District started an injection program in 2014. In 2017, the two companies offering injection service merged. Subsequent cost increases have now put the cost of injecting cable on par with outright replacement. Replacement is preferred as it is a 40 year fix (injection is a 20-25 year fix), and it provide a conduit which allows for much easier replacement in the future. The focus remains areas of the system still utilizing direct buried, high molecular weight (HMW) polyethylene insulated cables, which the District refers to on our maps as "ALCN" cable. It is anticipated that there are about 400 segments of this cable that will be addressed in 2019, addressing the majority of the at risk cable and leaving only small pockets of ALCN to be addressed in future years. These cable replacement efforts will continue, replacing segments that cannot be injected, or replacing cable that is already in conduit. In addition, the District has been systematically planning projects to upgrade our aging underground feeder getaway cables and upgrades to our underground getaway vault systems so that no more than two feeders share a vault. By redesigning our getaway vault system in conjunction with the cable replacements we will improve the reliability and operation of the system for the long term. Substations with getaway cable and vault systems that do not meet the newer practices are Vista Substation (XLP Cable \& Vaults), Prosser Substation (XLP Cable), and Riverfront Substation (XLP Cable). Prioritization will consider sensitivity of the system to failures of the cables in question, age of the cable, characteristic evaluation (i.e. ampacity (size), neutral integrity, number of past failures), and economic analysis.
\# 11 - GUM-4 (Gum Street), HED-3 (Hedges), reconductor 3/0 ACSR line along Bowles Rd. from S. Oak St. east to Haney Rd. Feeder GUM-4 can be used to pick up a portion of HED-3 during Hedges Substation outages. Currently, GUM-4 can only support a portion of HED-3. There are low voltage problems for HED-3 customers over a large area. Therefore, customers downstream of recloser L159R on Nine Canyon Rd. would need to remain out of service. Upgrading the 3/0 ACSR would alleviate the low voltage problems. This project, combined with Project \#10 (S. Oak St. reconductor), will allow feeder GUM-4 to pick up $100 \%$ of HED-3. Because this tie line is normally lightly loaded, 336.4 AAC is recommended as the economic conductor for this upgrade.
\# 12 - GUM-4 (Gum Street), reconductor \#4 ACSR line along S. Oak St. from Bowles Rd. south to Game Farm Rd. Feeder GUM-4's 1000 kcmil cable is potentially overloaded when GUM-4 is picking up 100\% of HED-3 (Hedges). Feeder GUM-3 can provide only minor load transfer capability. To offload GUM-4 during Hedges outages and to better utilize the exiting investment of Zephyr Heights Substation, this project is
recommended to facilitate load transfer between GUM-4 and ZEH-4. This project, combined with Project \#41 (ZEH-4 to GUM-4 feeder tie) and \#13 (Game Farm Rd. reconductor), provides load transfer capability from GUM-4 to ZEH-4 and a future main feeder route for permanent load transfer to feeder ZEH-4. Existing load south of Bowles Rd. could be transferred from feeder GUM-4 to feeder ZEH-4. According to Operations, this section of line has a history of trouble, including conductor burn down, that further justifies the upgrade. Coupled with the improvements in Project \#10, line switches will be installed on this project to allow the portion of GUM-4 south of Bowles Rd (but upline of L1244R) to be transferred to GUM-3 during Hedges outages until Project \#41 is completed. A line switch shall be installed just before the tee on Game Farm road to facilitate Project \#41. As part of design the location of L51V will be evaluated to see if a more beneficial location can be found due to the larger conductor and communication issues the regulators are having as their current location are in a gully. Because this line is normally lightly loaded and in the future will primarily be a tie between GUM-4 and ZEH-4, 336.4 AAC is recommended as the economic conductor for this upgrade.

## \# 13 - GUM-4 (Gum Street), reconductor \#4 ACSR line along Game Farm Rd.

This project, combined with Projects \#41 (ZEH-4 to GUM-4 feeder tie) and \#12 (S. Oak St. reconductor), provides load transfer capability from GUM-4 to ZEH-4 and a future main feeder route for permanent load transfer to feeder ZEH-4. Existing load south of Bowles Rd. could be transferred from feeder GUM-4 to feeder ZEH-4. In addition, extending feeder ZEH-4 to the east will facilitate a future tie to Hedges feeder HED-3. This project, combined with Project \#12 (S. Oak St. reconductor) and Project \#14 (GUM-4 to HED-3 feeder tie), supports the load transfer capability desired for GUM-4 to ZEH-4 and from HED-3 to ZEH-4. These load transfers are needed to improve Hedges Substation outage support, but may also be considered for permanent load transfer. In the future this line will be a main feeder route for ZEH-4, however, the loading will still be relatively low and therefore 336.4 AAC is recommended as the economic conductor for this upgrade.
\# 14 -GUM-4 (Gum Street) to HED-3 (Hedges), new overhead feeder tie line from Game Farm Rd. south to Terrill Rd. Hedges feeder HED-2 currently has limited options for load transfer. During Hedges substation outages, 100\% of HED-1 and HED2 are transferred to Phillips Bay 4 feeder PHI-7, which overloads the 1000 kcmil cable on PHI-7. Hedges feeder HED-2 needs additional load transfer options. This project, combined with the project \#19 (Terrill Rd. reconductor), will allow a route for feeder ZEH-4 (via existing GUM-4) to tie with HED-3 and HED-2. With ZEH-4 picking up HED2 load, it would reduce loading on $\mathrm{PHI}-7$ during Hedges Substation outages. Maximizing the HED-2 load transfer to ZEH-4 also improves the outage situation for HED-4 load northeast of Hedges substation, which could then be picked up by PHI-7 or by creating a new tie with HED-3 so that GUM-1 could pick up more of HED-4. In addition to outage support, this project, combined with the other ZEH-4 projects, enables the possibility for permanent load transfer from HED-3 to feeder ZEH-4, reducing the relatively high Hedges transformer bank loading. Because this line will normally be lightly loaded, 336.4 AAC is recommended as the economic conductor for this upgrade.
\# 15 - HLS-4 (Highlands), reconductor 3/0 ACSR line along W. $10^{\text {th }}$ Ave. from S. Edison St. east to S. Union St. ANG-2 support from HLS-4 is limited by the 3/0 ACSR overhead line on W. $10^{\text {th }}$ Ave., which could be severely overloaded if existing switching was used. Upgrading this section of line will remove a potential weak point in the system, increase reliability by replacing an aging circuit and provide a more economical conductor size for HLS-4 loading during normal configuration. It should be noted that feeder HLS-4 overhead line to the east (from S. Union St. east to L98A near S. Morain St.) has already been upgraded to 556.5 AAC. Because this will be a main feed normally carrying high load, 556.5 AAC is recommended as the economic conductor for this upgrade. This project will move feeder HLS-4 on W. $10^{\text {th }}$ Ave. closer to $100 \%$ upgraded, but additional 3/0 ACSR remains on HLS-4 east of Morain St.
\# 19 - HED-3 (Hedges), reconductor \#4 ACSR line along Nine Canyon Rd. from Game Farm Rd. south to Terril Rd. and then west along Terril Rd. Hedges feeder HED-2 currently has limited options for load transfer. During Hedges substation outages, a significant portion of Hedges load is transferred to Chevron feeder C2. Hedges feeder HED-2 needs additional load transfer options. This project, combined with the GUM-4 to HED-3 tie, will allow a route for feeder ZEH-4 (via existing GUM-4) to tie with HED-3 and HED-2. This upgrade is required to ensure adequate voltage. With ZEH-4 picking up HED-2 load, it would reduce loading on C2 during Hedges Substation outages. It also enables the potential to create a new tie between HED-3 and HED-4 so that GUM-4 could pick up more of HED-4. In addition to outage support, this project, combined with the other ZEH-4 projects, enables the possibility for permanent load transfer from HED-3 to feeder ZEH-4, reducing the relatively high Hedges transformer bank loading. Because this line will normally be lightly loaded, 336.4 AAC is recommended as the economic conductor for this upgrade.
\# 20 - HED-4 (Hedges), reconductor 3/0 ACSR line along E. 19 ${ }^{\text {th }}$ Ave., S. Yew St., and Perkins Rd. from S. Oak St. east to Haney Rd. The primary need for this project is to improve outage support for Hedges feeder HED-4. For Hedges Substation outages, feeder GUM-1 is the primary support feeder for HED-4, but GUM-1 cannot provide adequate voltage when picking up $100 \%$ of HED-4. There are severe voltage problems for HED-4 customers. Customers downstream of L947A, near Perkins \& Haney, would need to remain out of service for adequate voltage to other HED-4 customers. This project, combined with the GUM-1 reconductor and the GUM-4 to HED4 tie and reconductor, will allow feeder GUM-1 to pick up 100\% of feeder HED-4 with adequate voltage to nearly all HED-4 customers. A switch should be added north of Perkins Rd. on Haney Rd. This switch would be opened during HED-4 outages when picked up by GUM-1. Because this is primarily a tie line and is normally lightly loaded, 336.4 AAC is recommended as the economic conductor for this upgrade.
\# 21 - HED-4 (Hedges), reconductor \#6 CU along Bernath Rd. from Haney Rd. west to S. Yew St. and new feeder tie to GUM-4 (Gum Street). This project is needed to improve outage support for Hedges feeder HED-4. For Hedges Substation outages, feeder GUM-1 is the primary support feeder for HED-4, but GUM-1 cannot provide adequate voltage when picking up $100 \%$ of HED-4. There are severe voltage problems
for HED-4 customers. Customers downstream of L947A, near Perkins \& Haney, would need to remain out of service for adequate voltage to other HED-4 customers. This project, combined with the GUM-1 and GUM-4 reconductor and the Perkins Rd. HED-4 reconductor, will allow feeder GUM-1 to pick up 100\% of feeder HED-4 with adequate voltage to nearly all HED-4 customers. Feeder GUM-4 and HED-4 currently coexist near S. Yew St. \& Bernath St., but are not electrically connected. Fiber does span approximately 320 feet from one circuit to the other with a fiber only pole in the middle. Adding a feeder tie at this location will greatly improve the ability for GUM-1 to support HED-4 customers to the east. The GUM-4 line is a main feeder route at this location and the $3 / 0$ ACSR is recommended for upgrade in a separate project. Feeder HED-4 at this location is not a main feeder route and is currently only three phase \#6 CU and some \#4. Upgrading this line to main feeder conductor from this location east to Haney Rd. will provide significantly better voltage support when GUM-1 is picking up HED-4 customers. Feeder HED-4 has no other feeder ties on its northern half. Completing this feeder route upgrade along Bernath Rd. will allow for a future feeder tie from feeder KEN-8 on the north. Because this is primarily a tie line and is normally lightly loaded, 336.4 AAC is recommended as the economic conductor for this upgrade. A 167kVA regulator will be required at 83009-4901 for voltage support during a Hedges bay outage.

## \# 22 - KEN-8 (Kennewick), convert overhead to underground across fairgrounds

 This project recommends converting the 3/0 ACSR overhead line that goes across the county fairgrounds to a 1000 kcmil underground circuit with increased capacity. This will improve the outage transfer capability from KEN-8 to GUM-1 or GUM-4.\# 36 - SSR-3 (Sunset Road), relocate and reconductor 1/0 CU line along E. Jacobs Rd./I-82 from Sunset Rd. Substation east to I-182. The primary purpose of this project is to improve the ability of Reata feeder RTA-4 to pick up a larger portion of Sunset Road feeder SSR-3 during outages and provide better support as load continues to grow in the Red Mountain area. Due to updates to the proposed routing the western portion of this project shall be completed concurrently with the planned transmission project to connect Sunset Road to City of Richland's Dallas Road substation site. The eastern portion will be completed the following year. Growing irrigation load has caused voltage exceptions to emerge near the east end of this portion of feeder. This project will install 556.4 conductor from near the western l-82 crossing to a location near the eastern UG I-82 crossing. The existing line will be left in place and operated as a radial tap line, and subsequent smaller projects will be proposed to DNR to move the loads currently fed from the existing line to the new line along Jacobs Rd. This project will also install a 250 kVA regulator bank at the eastern end of the project to help support voltage during Reata outages. As this project will be completed across two budget years it is being denoted as " 36 a " and " 36 b " in the tables and on the project maps.
\#38 - V1 to V6 (Vista), underground feeder tie south across W. Quinault Ave. In conjunction with the Vista feeder underground getaway upgrades, it is desirable to get a second feeder into the Columbia Center Mall from the south. Currently, only feeder V1
serves the mall with three taps (west, center, east) feeder from north to south. Only the western feed has a loop (V1 to V6). The center and east taps have no loops. This project would utilize existing feeder V6 to add a tie to feeder V1 from the south. Currently, the existing feeder is V7. The preference would be to utilize feeder V6 as the tie because it is lightly loaded. This will require the installation of a switch cabinet along W. Quinault Ave. to move the normal open point between V6 and V7 so that V6 can feed to the north. There is an existing conduit across W. Quinault Ave. that makes this project even more viable. Additional study is required to determine if other upgrades are required for this tie to support Columbia Center, but this project is the first step.
\# 39 - ZEH-1 (Zephyr Heights), new overhead line from Canyon Lakes west to Hwy 395 and underground feeder tie with STH-3 (Southridge). This project would extend an overhead line from Zephyr Heights feeder ZEH-1 in the area near the Heights at Canyon Lakes (South Hill) development, west towards the Southridge area to make an underground tie with Southridge Feeder STH-3 on the east side of Hwy 395. The likely route for the overhead line from east to west would be within the Bonneville Power Administration's (BPA) existing transmission line right-of-way. Extending feeder ZEH-1 will provide additional outage support to the Southridge area and for ZEH-1. Because this is primarily a tie line and would normally be lightly loaded, 336.4 AAC is recommended as the economic conductor for this upgrade.
\# 41 - ZEH-4 (Zephyr Heights) to GUM-4 (Gum Street), new feeder and overhead line from Zephyr Substation east to Game Farm Rd. Feeder GUM-4's 1000 kcmil cable is potentially overloaded when GUM-4 is picking up $100 \%$ of HED-3 (Hedges). Feeder GUM-3 can provide only minor load transfer capability. To offload GUM-4 during Hedges outages and to better utilize the exiting investment of Zephyr Heights Substation, this project is recommended to facilitate load transfer between GUM-4 and ZEH-4. This project, combined with the S. Oak St. and Game Farm Rd. reconductor projects, provides load transfer capability from GUM-4 to ZEH-4 and a future main feeder route for permanent load transfer to feeder ZEH-4. Existing load south of Bowles Rd. could be transferred from feeder GUM-4 to feeder ZEH-4. In addition, extending ZEH-4 to the east will facilitate outage support to other Hedges feeders (HED-2, HED3). The proposed route is to double circuit with ZEH-3 south of the substation to SR397, then follow the road until intercepting GUM-3, then double circuit north to Game Farm Road.
\#54 - ZEH-3, Reconductor 1/0 Cu OH from just outside Zephyr Heights Substation to tie switch L998A for GUM-3 to ZEH-3 load transfer. Feeder GUM-4's 1000kcmil cable is potentially overloaded when GUM-4 is picking up $100 \%$ of HED-3 (Hedges). In order to reduce loading on GUM-4 this project in conjunction with the GUM-3. Getaway rearrangement to pick up GUM-4 load will allow for more support from Gum feeders to the east to tie to Hedges circuits and improve options during outage contingency switching.
\#56 - ELY-8 (Ely), Reconductor 3/0 ACSR OH from S. Ely St. East to S. Conway St. along W. $15^{\text {th }}$ Ave. and from W. $15^{\text {th }}$ Ave. north along S. Conway St. to an existing
riser. During HIG-4, HIG-2 (Highlands), KEN-2 (Kennewick), and ANG-2 (Angus) outages, ELY-8 is limited by 7 spans of 3/0 ACSR OH conductor. Reconductoring this portion of line would allow better utilization of ELY-8 during these outages. The majority of ELY-8's load is down stream of this section of $3 / 0$. The ideal conductor would be to stay consistent with 336.4 AAC as is installed in the adjacent area.
\#58 - BEC-3, New Benton City Feeder east along Transmission ROW across Yakima River. This project will install a new feeder tie with northern portions of SSR-1 (Sunset Rd). This project will allow better support for Sunset Rd outages now that Benton City Substation has been upgraded and can support a $3^{\text {rd }}$ feeder. KID has installed two large pumping stations in the Red mountain area on the east side of the Yakima River which have encouraged further agricultural development. 336.4 AAC is recommended as the economic conductor for this project. A minimum of one 333kVA regulator installations will be required for voltage support during switching contingencies as the proposed distance covers several miles. The installation of a switch at 927090002 is the recommended location to split SSR-1 to accommodate outage contingency switching.
\#79 - Reconductor \#4 Badger Rd from L766A to L80R. This reconductor makes it possible for Orchard View feeder ORV-3 to feed loads in the Ridge at Reata West area of Badger Canyon during a Reata Outage. Currently there are voltage issues in the Country Meadows area when ORV-3 is used to pick up load on this portion of RTA-2. This project coincides with previously completed projects \#80 (reconductor L80R to Spirit Ln), \#57 (reconductor SSR-3 Badger Rd to L767A), \#59 (reconductor Badger Rd L767A to L25A), and \#60 (reconductor L25A to L70R). The ideal conductor would be to stay consistent with 336.4 AAC as has been called out in the previous projects. Once the final location of Badger Canyon substation is determined this project should be wrapped into the associated feeder reconstruction efforts.
\#81 - New Phillips Feeder PHI-8, Reconductor Cochran Rd. from Finley Rd to SR397 - This project along with a new Phillips Substation PHI-8 feeder will allow the District to more fully utilize the investment made in Phillips Bay 4, and reduce the District's dependency on Chevron Substation which is primarily used to feed the District's lone industrial customer Nutrien. The use of Chevron Substation for Hedges outages is not ideal since Nutrien has large equipment that when started can introduce large voltage drops on the distribution system when used for contingency switching. This project will install a new feeder getaway from Phillips substation to the north and connect with the reconductored Line on Cochran Rd. The 80T fuses at 83022-5901 will need to be replaced with a line switch or a hard tap. In addition a line switch will be required along Finley road between Pole 83022-5906 and the flying tap just north of 83027-9907. This project will also allow more load to be picked up at the east end of HED-4 without exposing customers to the infrequent yet large voltage variations they would experience while being fed from Chevron Substation via CHE-2. The ideal conductor would be to stay consistent with 336.4 AAC as is installed in the adjacent area. This project may require a regulator installation as well, additional study will be required.
\#83 - Voltage Optimization (VO) - An initiative is underway to implement voltage optimization as a qualifying distribution efficiency conservation measure to assist in meeting our I-937 targets. The District has been working with Bonneville Power Administration and their technical service provider in the study phase of the District's first voltage optimization project. While all 9 feeders at Kennewick Substation are targeted for VO, Bay 1 (K1, K2, K3) have been targeted for this first project. An initial study has been performed by a third party consultant working for Bonneville Power Administration (BPA), and the benefits of voltage optimization are outlined in "Distribution System Efficiency and Voltage Optimization Scoping Study - Benton County PUD" dated March 7th, 2014. The District has completed the one year data collection phase, and is currently evaluating implementation options with BPA. Necessary system improvements (re-phasing and reconductoring) were completed in 2021/2022 and initial implementation of Voltage Optimization on K1-K3. The District is planning to repeat similar projects in the future.
\#95 - HED-2 (Hedges), Reconductor 266.8 ACSR from Hedges Substation to Finley Rd along Perkins Rd and from Perkins Rd to Bowles Rd along Finley Rd. During PHI-6, PHI-7 (Phillips Bay 4) outages, HED-2 is limited by the 266.8 ACSR feeder get-away. Reconductoring this portion of line would allow better utilization of HED-2 during these outages. This project coincides with completed projects \#93 (new switch on Piert Rd) and \#94 (new switch on Game Farm Rd). The ideal conductor would be to stay consistent with 336.4 AAC as the remaining main line portion of HED-2 is currently 336.4 AAC. Project \#102 provides provisions to underground a portion of the get-away to mitigate the single point of failure on the existing three circuit get-away structure. While not specifically part of this project, it should be considered to align this reconductoring with reconductoring of the transmission line overbuild.
\# 100 - Southridge Feeder Support. This project is intended as a placeholder to account for system improvements with sudden growth in the Southridge area that are not specifically identified in the current Five Year Plan. The District has not been notified to date of any large "anchor" tenants associated with COK's Bob Olsen Parkway road extension project. However the District anticipates future growth in the Southridge/South Thompson Hill area to correlate with the completion of the project. Additionally the COK UGA is expanding south of I-82 along the Christensen road area and is anticipated to be zoned commercial, similar to Brinkley Rd. Long term support for this projected growth will be accomplished through extension of feeders ORV-1, ORV-7, ORV-8, and the construction of Ridgeline Substation. Prior to these projects, existing feeders must be utilized to support growth in the near term. Currently Highlands HIG-1, and HIG-5, Orchard View ORV-3, and Southridge STH-4 feeders are in the vicinity. Existing facilities in the area will potentially require upgrading and additional feeder ties will need to be constructed. The specific location of these ties and which feeder is most optimal is dependent on where the load growth occurs. Due to the unknown nature of the future loads, budgeting for this project would be accomplished through a budget amendment.
\# 101 - Rural Feeder Reliability and Sectionalizing - In the 2016 Plan three rural feeders were selected for reliability improvements through additional sectionalizing. The District's performance measures, which include outage indices that measure outage customer count and outage duration, were used to select these feeders. Due to their nature the number of customers on rural feeders tends to be lower, but outage times tend to be longer due to the generally more difficult line patrol conditions. This project is intended to account for reliability \& sectionalizing improvements on one or two rural feeders a year. This project would use the District's reliability metrics to select which feeders, but the initial focus is anticipated to be the Benton City, Gum, Hedges, Prosser, and Sunset Road feeders.
\# 102 - HED-4 (Hedges), Get-away Reconductor. The 3/0 overhead get-away conductor for HED-4 exceeded $90 \%$ of the conductor rating during winter peak conditions in 2016-2017 as identified in the 2018 Plan. Additionally feeders HED-2, HED-3, \& HED-4 all exit the station via the get-away same overhead structure. This puts an increased reliability risk resulting in de-energizing three of the four Hedges feeders through a single car-pole accident, pole fire, etc. While a direct overhead replacement with 336.4 AAC is possible, it is desirable to minimize the risk of a large outage associated with a single incident. For this reason it is recommended to replace the overhead get-away for HED-4 with a 1000 kcmil underground one. It is additionally recommended that provisions (additional conduit) be put into place to accommodate replacing the get-away for HED-2 when the reconductor described in project \#95 occurs to further reduce the single cause outage exposure on Hedges substation.
\# 105 - KEN-9 (Kennewick), reconductor 3/0 ACSR line along Washington St. from W. 11 th Ave. south to W. 16 ${ }^{\text {th }}$ Ave. GUM-1 support from KEN-9 is limited by the 3/0 ACSR overhead line on Washington St., which is over $90 \%$ loaded when existing switching is used. Upgrading this section of line will remove a potential weak point in the system, increase reliability by replacing an aging circuit and provide a more economical conductor size for KEN-9 loading during normal configuration. The ideal conductor would be to stay consistent with 336.4 AAC as the remaining main line portion of KEN-9 upline is currently 336.4 AAC. This project will move feeder KEN-9 on Washington St. closer to $100 \%$ upgraded, but additional 3/0 ACSR remains on KEN-9 between W. $16^{\text {th }}$ Ave and $27^{\text {th }}$ Ave.
\# 113 - ELY-2 (Ely) reconductor 3/0 on Garfield St from L138A south to 829123405. ELY-2 support from KEN-5 is limited by the 3/0 ACSR overhead line on Garfield St., which is over $90 \%$ loaded when existing switching is used. Upgrading this section of line will remove a potential weak point in the system, increase reliability by replacing an aging circuit and provide a more economical conductor size for ELY-2 loading during normal configuration. The ideal conductor would be to stay consistent with 336.4 AAC as the remaining main line portion of ELY-2 upline is currently 336.4 AAC.
\# 116 - RTA-2 Country Meadows Additional Feed. The main portion of the Country Meadows development is a large single-phase tap that has a history of nuisance trips during heavy winter loading conditions. Routing of additional conduit through the
established neighborhood would be difficult and costly due to the amount of landscaping and asphalt repair required. The District previously routed in a feed from the west as part of a subdivision development in the area. This solves the near-term normal condition loading issue but still leaves the area vulnerable during abnormal outage switching conditions due to cold load pickup and both sources being on RTA-2. Assuming the District can secure the necessary easement and the canal crossing permit the proposed route would be:

From pole 82821-6102 route overhead south across the irrigation canal. Follow the canal to the west. Transition to underground and move south to tie into the existing conductors at 82820-5901. Due to the possibility of backfeeding during outage support the minimum underground conductor size is $1 / 0$ EPRJ. This allows for the use of Leslie Road feeder LES-1 for some limited switching during local outages.
\# 117 - SSR-1 offload to SSR-3. With the build out of SSR-4 and subsequent splitting of SSR-3, SSR-3 now has available capacity to accommodate a load shift from SSR-1. While SSR-1 is not overly heavily loaded, it covers a relatively large geographic area that slows patrol times during feeder outages. Furthermore load in Benton City is growing limiting available switching capacity. Load east of L1430A will be moved to SSR-3. With the previous installation of L1410A and L1500A and the installation of additional fault indicators, this load shift will reduce crew patrol times during outages and allow for more flexible switching options and set up the area for the build out of feeder BEC-3.
\# 119 - PSR-3 (Prosser), reconductor of 4/0 XLPJ to 1000 kcmil \#2 STRBC to 336.4 AAC. During a summer Prosser Bay 1 outage Riverfront has limited switching options, resulting in an overload of Prosser Bay 2 during switching. Reconductoring the \#4/0 XLP from switch L595A to Pole 82402-2804 with 1000 kcmil , and the \#2 STRBC from Pole 2402-2804 to Pole 2402-4907 with 336.4 AAC would allow additional load to be transferred to Riverfront and prevent an overload at Prosser Bay 2. 336.4 AAC was selected as the ideal conductor to stay consistent with the other feeder mainlines in the Prosser area.
\# 120 - ANG-4 (Angus) reconductor 3/0 ACSR on Clearwater Ave from L311A east to 82903-9902. ANG-7 support from ANG-4 is limited by the 3/0 ACSR overhead line on Clearwater Ave., which is loaded to $98.3 \%$ of its emergency rating when existing switching is used. Upgrading this section of line will remove a potential weak point in the system, increase reliability by replacing an aging circuit and provide a more economical conductor size for ANG-4 loading during normal configuration. The ideal conductor would be to stay consistent with 336.4 AAC as the remaining main line portion of ANG-4 downline is currently 336.4 AAC.
\# 121 - HLS-7 (Highlands) reconductor 4/0 ACSR on Clearwater Ave from 829049303 west to 82904-9002. HLS-3 support from HLS-7 is limited by the 4/0 ACSR overhead line on Clearwater Ave., which is loaded to $97 \%$ if ORV-5 is not utilized. Upgrading this section of line will remove a potential weak point in the system, increase
reliability by replacing an aging circuit, simplify switching requirements in the area, and provide a more economical conductor size for HLS-7 loading during normal configuration. The ideal conductor would be to stay consistent with 336.4 AAC as the remaining main line portion of HLS-7 upline \& downline is currently 336.4 AAC.
\# 122 - ANG-3 (Angus) reconductor 3/0 ACSR on Clearwater Ave from L314A west to 82903-9002. Ongoing growth in the Vista Field area has limited ANG-9 support from VIS-4 and no longer allows a full transfer from ANG-9 to VIS-4 during summer peaks. Alternate switching to move part of ANG-9 load onto ANG-3 to prevent a VIS-4 getaway overload condition results in the 3/0 ACSR on ANG-3 to be loaded to $90.33 \%$ of its emergency rating. Upgrading this lime will remove a potential weak point in the system, increase reliability by replacing an aging circuit and provide a more economical conductor size for ANG-3 loading during normal configuration. The ideal conductor would be to stay consistent with 336.4 AAC as the downline main line portions of ANG-3 is currently 336.4 AAC.
\# 123 - Badger Canyon Feeder Redevelopment. While installation of these feeders is beyond the timeline of the 2022 Plan, this project is intended as a placeholder to account for system improvements to the existing distribution feeder layout associated with the buildout of Badger Canyon substation. Once the final location for Badger Canyon substation is established proposed feeder routing will be determined and noted to coordinate with continued development in the area. It is currently anticipated that one feeder would route along the tap on RTA-2 that feeds L80R, one would head west and tie to SSR-4, and two would double circuit to the east to tie into RTA-3 and LES-1.

Table A2 - Substation Projects

| POS\# | Substation, Project Description | Cost Estimate (\$K) |  |  |
| :---: | :--- | :---: | :---: | :---: |
|  |  | $\mathbf{2 0 2 3}$ |  |  |  |
| Mat. |  |  |  | Lab. |
| S0tal |  |  |  |  |
| S10 | Misc. Sub -Aux. Equip., Relays/Controls | 15 | 10 | 25.0 |
| S39 | Misc. Sub. SCADA Equip., RTUs/Comms | 20 | 30 | 50.0 |
| S42 | Vista Bay 1 Metalclad Replacement | 839.3 | 216.8 | 1056.1 |
| S42 | Vista Bay 1 SCADA Upgrades | 25.2 | 15.1 | 40.3 |
| S41 | Prosser Bay 2 Regulator Replacement | 573.8 | 38.0 | 611.8 |
| S39 | Prosser Bay 2 SCADA Upgrades | 7.0 | 8.0 | 15.0 |
| S43 | Hedges Regulator Swap | 7.0 | 35.0 | 42.0 |
| S28 | Angus Bay 3 Breaker Upgrades | 158.8 | 47.9 | 206.7 |
| S39 | Angus Bay 3 SCADA Upgrades | 7.0 | 8.2 | 15.2 |
| S39 | Highlands Sub SCADA Upgrades - 2032 <br> Replacement | 36.5 | 26.4 | 62.9 |
| S33 | Prosser Bay 2 Offload or Capacity Exp. | TBD | TBD | TBD |
|  | 2023 Total | $\mathbf{\$ 1 , 6 9 0}$ | $\$ 435$ | \$2,125 |


| POS\# | Substation, Project Description | Cost Estimate (\$K) |  |  |
| :---: | :--- | :---: | :---: | :---: |
|  |  |  |  |  |
| Mat. |  |  |  | Lab. |
| S0tal |  |  |  |  |
| S10 | Misc. Sub -Aux. Equip., Relays/Controls | 15 | 10 | 25.0 |
| S39 | Misc. Sub. SCADA Equip., RTUs/Comms | 20 | 30 | 50.0 |
| S46 | Hedges Oil Breaker \& Battery Bank <br> Replacement | 39.9 | 15.1 | 55.0 |
| S39 | Hedges Substation SCADA Upgrade | 21.0 | 15.0 | 36.0 |
| S05 | Prosser Bay 1 Circuit Switcher Addition | 168.0 | 82.4 | 250.4 |
| S39 | Prosser Bay 1 SCADA Upgrades | 64.4 | 38.3 | 102.7 |
| S39 | Zephyr Heights Sub SCADA Upgrades - <br> 2032 Replacement | 9.5 | 25.5 | 35.0 |
| $\mathbf{2 0 2 4}$ Total |  |  |  |  |


| POS\# | Substation, Project Description | Cost Estimate (\$K) |  |  |
| :---: | :--- | :---: | :---: | :---: |
|  |  | Mat. | Lab. | Total |
|  |  |  |  |  |
| S10 | Misc. Sub -Aux. Equip., Relays/Controls | 15 | 10 | 25.0 |
| S39 | Misc. Sub. SCADA Equip., RTUs/Comms | 20 | 30 | 50.0 |
| S05 | Prosser Bay 2 Circuit Switcher Addition | 168.0 | 82.4 | 250.4 |
| S39 | Prosser Bay 2 SCADA Upgrades | 18.5 | 11.4 | 29.9 |
| S44 | Vista Bay 2 Metalclad Replacement | 839.3 | 230.0 | 1069.3 |
| S44 | Vista Bay 2 SCADA Upgrades | 7.0 | 8.2 | 15.2 |
| $\mathbf{2 0 2 5}$ Total |  |  |  |  |


| POS\# | Substation, Project Description | Cost Estimate (\$K) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Mat. | Lab. | Total |
| 2026 |  |  |  |  |
| S10 | Misc. Sub -Aux. Equip., Relays/Controls | 15 | 10 | 25.0 |
| S39 | Misc. Sub. SCADA Equip., RTUs/Comms | 20 | 30 | 50.0 |
| S10 | Bay \& Feeder Relay Upgrades - Riverfront | 120.2 | 154.4 | 274.6 |
| S37 | Riverfront Battery Bank Replacement | 13.9 | 7.6 | 21.5 |
| S10 | Sunset Rd Bay Relays Upgrade | 59.3 | 60.6 | 119.9 |
| S39 | Sunset Rd SCADA Upgrades | 18.5 | 11.1 | 29.6 |
|  | 2026 Total | \$247 | \$274 | \$521 |



## Substation Project Descriptions

\#S05 - Circuit Switcher Additions (replace high side transformer fusing). These projects will increase protection of the power transformers by allowing additional differential protection and gang operated switching during substation bay faults. Currently some substations utilize fusing on the high side of the power transformer for protection of faults occurring on some piece of equipment included in the bay (i.e. Power Transformer, LTC/Voltage Reg, PT's, CT's, and Busing). Replacing the fusing with a Circuit Switcher will allow the District to monitor the bay as a unit via additional relaying, and allow for the complete, automatic isolation of a bay if problems are detected. This will also eliminate single phase conditions that can occur with high side fusing applications. Priority is driven by system impact, and level of additional work required. Projects may also be "bundled" with other co-located substation projects in order to minimize future project related outages and abnormal switching. The addition of circuit switchers will include transformer protection relay packages to include Overcurrent and Differential Protection.

- Prosser 1 \& 2
- Hedges
\#S10 - Misc. Substation Auxiliary equipment (Relays/Controls). This project category includes various minor equipment upgrades.
\#S28 - 15 kV Breaker Replacement/Upgrade. These projects are necessary to ensure equipment that has, reached its end of life and are difficult to find parts for, are replace with more modern breaker technologies. These projects would generally include relay upgrades to microprocessor based protective relaying at the same time.
Priority (in order):
- Angus - mostly control switch issues, one bay has newer so less priority. Bay 2 has become a higher priority as we have had trip coil failures and maintenance is becoming more difficult.
\#S31 - Hedges Substation Overhaul. Currently the Hedges Bay consists of high side fusing, a non-LTC power transformer, a low side main bus breaker, and a standalone three phase regulator. The previous oil treatment on DN43 drastically improved oil testing results and no abnormal degradation is being found on routine Doble testing. Coupled with the improvements to the bus breaker and the 125VDC to 48VDC battery bank conversion described in project \#S46 (scheduled for 2024), this project will most likely be scheduled to coincide with the planned replacement of DN43, which is beyond the scope of the 2022 FYP.

This project will install a new circuit switcher and transformer protection package, and power transformer. The age and health of the freestanding regulator will dictate if the power transformer needs to be an LTC or non-LTC style. Additional scope includes evaluating the existing ground grid to determine if improvements are required. These
upgrades to Hedges substation will bring the station on par with rest of the District's substation fleet.
\#S33 - Prosser Bay 2 - REA Offload or Capacity Expansion. Currently the District supplies several Benton REA (BREA) feeders from Prosser Bay 2. During the last planning cycle the 20 MVA power transformer was loaded to $110 \%$ of nameplate during the winter and $96 \%$ of nameplate during the summer, with BREA accounting for $46 \%$ and $57 \%$ of those loads respectively. With the District's winter planning criteria allows a non-LTC power transformer to operate at $136 \%$ of nameplate, this loading limit is only $90 \%$ during the summer. The available options to reduce loading are to replace the existing 20 MVA unit with a 25 MVA one or work with BREA to have them reduce their dependency on Prosser Bay 2. The District initiated a conversation with BREA in July 2018 to notify them of the loading condition. BREA is currently planning on energizing Huard substation north of Prosser in fall 2022 and this will reduce some of the loading on Prosser Bay 2. Concurrently BREA is working on a design to install their own power transformer at Prosser Substation to remove their loads from Prosser Bay 2.
\#S34 - Edison St Substation. This station will consist of a Circuit Switcher, 25MVA LTC transformer, and a four breaker metalclad/control house assembly. The District has already submitted an interconnection request with BPA, informing them of our intent to build. The Port of Kennewick has generated a master growth plan for the Vista Field area and this substation will provide needed support to the area as development occurs. Additionally, this substation will provide outage support to Angus feeder ANG-9, Highlands feeder HIG-3, and Vista feeders VIS-3 and VIS-4. Current feeder routes have been determined and infrastructure has been installed on Metaline Drive. Timing for the construction of this substation remains as a $5^{\text {th }}$ year project in the 2022 FYP as it is heavily dependent on the Port of Kennewick coming through with the development they have been speaking of. Construction timing will be reevaluated in the 2024 FYP based on actual realized development by the Port of Kenneiwck.
\#S37 - Battery Bank Replacements. These projects will replace the aging Direct Current (DC) infrastructure at the substations which provide critical backup power in the event of an AC power outage. The battery banks provide power for protective devices to issue tripping commands to circuit switchers, breakers, and reclosers. They also provide the necessary power requirements for opening said devices. The District is replacing battery banks on a 15 year cycle due to the critical nature of the load they support.
\#S38 - Animal Fence Installations. These projects will install 4 foot tall electric fences around equipment that can be easily scaled by squirrels or other small animals. The animals are deterred by the electric fence that provides a small amount of negative reinforcement to avoid significant outages or equipment damage.
\#S39 - Misc. Substation SCADA Equipment (RTUs/Communication). This project category includes upgrading RTU's and communications equipment. Also includes installation of fiber to substations that are currently on the radio network.

- Angus - SCADA upgrade to be aligned with scheduled Breaker replacements at bay 1, bay 2, and bay 3
- Hedges - SCADA upgrade to be aligned with scheduled substation upgrade.
- Highlands - Replace SEL-2032 with RTAC
- Zephyr Heights - Replace SEL-2032 with RTAC
- Prosser - SCADA upgrades to be aligned with scheduled bay 1 and bay 2 circuit switcher installations.
\#S40 - Prosser Bay 1 Regulator Upgrade. The regulator at Prosser Bay 1 was built in 1968 and routine testing results are starting to show signs of deterioration. This project will replace the existing 2000 kVA unit with a 2667 kVA unit similar to Reata substation. This size upgrade will accommodate the eventual replacement of the power transformer at Prosser Bay 1 with a standard 25 MVA unit.
\#S41 - Prosser Bay 2 Regulator Upgrade. The regulator at Prosser Bay 2 was built in 1968 and routine testing results are starting to show signs of deterioration. This project will replace the existing 2000 kVA unit with a 2667 kVA unit similar to Reata substation. This size upgrade will accommodate the eventual replacement of the power transformer at Prosser Bay 2 with a standard 25 MVA unit.
\#S42 - Vista Bay 1 Metalclad Switchgear Replacement. The metalclad switchgear at Vista Bay 1 was installed in 1968 and has reached the end of its operational life. While the original breakers were replaced in 2003, a controls only upgrade was not considered as the internal bus insulation is aging and the District has experienced insulation failure problems on other units of the same vintage. This replacement will have (4) magnetically actuated, vacuum breaker positions as well as modern microprocessor relay controls. SCADA RTU improvements will be made concurrently during the replacement.
\#S43 - Hedges Regulator Swap-out. The District's spare three phase, freestanding, substation regulator (DN 165) has never been put into service. This project will put DN 165 into service at Hedges substation and move the in-service DN 10 to be the District spare. DN 10 was chosen as dielectrically it tests well, but internal mechanical linkage maintenance costs of constant day to day operation are increasing. It is a good unit to use as a short term spare while purchasing a replacement in the event of a unit failure.
\#S44 - Vista Bay 2 Metalclad Switchgear Replacement. The metalclad switchgear at Vista Bay 2 was installed in approximately 1979 and has reached the end of its operational life. While the original breakers were replaced in 2012, a controls only upgrade was not considered as the internal bus insulation has previously experienced a tracking failure. While this failure was repaired, more failures will occur over time until one of them is catastrophic. This replacement will have (4) magnetically actuated, vacuum breaker positions as well as modern microprocessor relay controls. SCADA RTU improvements will be made concurrently during the replacement.
\#S44 - Ridgeline Substation. This station will consist of a Circuit Switcher, 25MVA LTC transformer, and a four breaker metalclad/control house assembly. The District previously purchased property for the future Ridgeline Substation in the Bob Olson Parkway area. Currently Highlands HLS-1 and HLS-5, Orchard View ORV-3, and Southridge STH-4 feeders are in the vicinity for near term growth. Medium term support for this projected growth is expected to be accomplished through the extension of feeders ORV-1, ORV-7, and ORV-8 and associated line upgrades as load requests come in. COK recently received approval to modify their urban growth plan to extend the UGA boundary south of I-82 into the Christensen Rd. area. It is expected that this area will be commercially zoned. Southridge STH-2 will provide medium term support to the area as heavy development is anticipated to be limited until COK's planned I82/Center Parkway interchange is completed, which per COK's published 2022-2027 traffic plan is beyond the scope of the 2022 FYP.

Ridgeline substation will be necessary to support the long term growth in these areas. The District has not yet submitted a formal interconnection request with BPA. The District should start this process and work with BPA to prepare the existing 115 kV line for a future interconnection to avoid the coordination issues that arose during the construction of Southridge Substation.
\#S45 - Badger Canyon Substation. This station will consist of a Circuit Switcher, 25MVA LTC transformer, and a four breaker metalclad/control house assembly. The District can currently switch out Reata substation during N-1 contingency conditions with the anticipated load growth cycle of the 2022 FYP, however that only covers the buildout of existing subdivisions or known proposed developments. While this moves Badger Canyon substation beyond the scope of the 2022 FYP, taking the load density (all electric) in the subdivision portions of Badger Canyon and applying it to remaining farmland/field areas results in the need for additional capacity in the Badger Canyon area in the medium ( $6-10 \mathrm{yr}$ ) term. The necessary installation year will be reevaluated in the 2024 FYP.

The District is just beginning to identify possible available property locations for Badger Canyon substation. The ideal location is near L80R which provides an ideal crossroads of existing lines to support the feeder buildout associated with substation development. While such routing will be re-evaluated in the 2024 FYP, it is anticipated that one feeder would route up the tap that feeds L80R, one would head west and tie to SSR-4, and two would double circuit to the east to tie into RTA-3 and LES-1.

The District should continue to partner with BPA on the future Weber - Badger Switchyard transmission line to ensure consideration for a substation connection is maintained and submit an interconnection request as soon as practicable.

Partnering with the City of Richland on their Dallas Rd. substation has been considered; but placing a substation bay at this location would limit feeder routes and make it extremely difficult to get feeder capacity to where it needs to be. Additionally it would
create another partially islanded substation on the edge of the system that would be difficult to maintain service during $\mathrm{N}-1$ contingencies.
\#S46 - Hedges Bus Breaker and Battery Bank Replacement. During the rebuild of Benton City substation in 2018, the District reclaimed a 15 kV ABB R-Mag vacuum breaker as a spare for the Hedges oil circuit breaker. The existing 15 kV substation bus protection circuit breaker at Hedges substation was manufactured in 1950 and has reached the end of its service life. In addition to replacing the breaker, the existing electromechanical controls are also scheduled to be replaced with an SEL-751.

Additionally Hedges is the last of the District's urban substations with a 125VDC battery bank. This project replaces this bank with a 48VDC one and includes the necessary control component upgrades for the remaining equipment to operate at 48VDC (power supplies, voltage converters, etc.).

The District previously retrofitted SEL-351R controls on the existing feeder reclosers. The SEL-351R was utilized due to the 125VDC battery bank being present.. As part of this project the SEL-351R units will be returned to inventory and replaced with the District's standard SEL-651R2 units, which will accept a direct 48VDC connection from the battery bank.

























(ELY)






## Appendix B

## Feeder Peaks

# [This Page Intentionally Left blank\} [For Two Sided Printing] 

## Table B1

Feeder Non-Coincidental Peaks - Winter

| Substation <br> Feeder/Bay (P.O.D) |  |  |  | \% of Annual System Growth | Projected Peak (kVA) at $0^{\circ} \mathrm{F}$ |  |  |  |  | Peak Season |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 19-20 | 20-21 | 21-22 |  | 22-23 | 23-24 | 24-25 | 25-26 | 26-27 |  |
| Angus (Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| ANG-9 | 5,107 | 5,175 | 5,406 | 0.0\% | 5,406 | 5,406 | 5,406 | 5,406 | 5,406 | Winter |
| ANG-1 | 3,833 | 3,911 | 4,216 | 0.0\% | 4,216 | 4,216 | 4,216 | 4,216 | 4,216 | Winter |
| ANG-2 | 5,715 | 5,609 | 6,347 | 0.0\% | 6,347 | 6,347 | 6,347 | 6,347 | 6,347 | Winter |
| Bay 3 | 14,655 | 14,695 | 15,968 | 0.0\% | 15,968 | 15,968 | 15,968 | 15,968 | 15,968 | Winter |
| ANG-3 | 5,638 | 5,821 | 6,061 | 0.0\% | 6,061 | 6,061 | 6,061 | 6,061 | 6,061 | Winter |
| ANG-4 | 4,534 | 4,612 | 4,409 | 0.0\% | 4,612 | 4,612 | 4,612 | 4,612 | 4,612 | Winter |
| ANG-5 | 6,143 | 5,987 | 6,937 | 0.0\% | 6,937 | 6,937 | 6,937 | 6,937 | 6,937 | Winter |
| Bay 1 | 16,315 | 16,420 | 17,407 | 0.0\% | 17,610 | 17,610 | 17,610 | 17,610 | 17,610 | Winter |
| ANG-6 | 4,757 | 4,815 | 4,843 | 0.2\% | 4,848 | 4,851 | 4,854 | 4,858 | 4,861 | Winter |
| ANG-7 | 4,158 | 4,216 | 4,723 | 0.0\% | 4,723 | 4,723 | 4,723 | 4,723 | 4,723 | Winter |
| ANG-8 | 5,313 | 5,277 | 5,636 | 0.0\% | 5,636 | 5,636 | 5,636 | 5,636 | 5,636 | Winter |
| Bay 2 | 14,227 | 14,308 | 15,202 | 0.2\% | 15,207 | 15,210 | 15,214 | 15,217 | 15,220 | Winter |
| Benton City (Benton City P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| BEC-1 | 6,425 | 6,513 | 7,481 | 0.0\% | 7,482 | 7,483 | 7,483 | 7,484 | 7,484 | Winter |
| BEC-2 | 5,073 | 5,046 | 6,144 | 2.6\% | 6,195 | 6,231 | 6,267 | 6,303 | 6,339 | Winter |
| BEC-3 | - | - | - | 0.0\% | - | - | - | - | - | Winter |
| BEC-4 | - | - | - | 0.0\% | - | - | - | - | - | Winter |
| REA | 2,000 | 2,000 | 2,000 | - | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | Winter |
| Bay 1 | 13,498 | 13,559 | 15,625 | 2.6\% | 15,677 | 15,713 | 15,750 | 15,787 | 15,823 | Winter |

Note: REA load went away in 11-12 due to their new substation. Projected value of 2,000 kVA is a reserved capacity value.
Note: Benton City rebuild completed fall 2019. BEC-3, BEC-4 currently spare positions.
Note: BEC-3 buildout anticipated spring 2021.
Cold Creek (Cold Creek P.O.D.)

| CCR-1 | 565 | 341 | 360 | $0.0 \%$ | 360 | 360 | 360 | 360 | 360 | Summer |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Bay 1 | 565 | 341 | 360 | - | 360 | 360 | 360 | 360 | 360 | Summer |

Notes: Cold Creek added to 5 Year Plan in 2018.
Ely (Kennewick P.O.D.)

| ELY-1 | 4,568 | 4,529 | 5,563 | $2.8 \%$ | 5,617 | 5,655 | 5,693 | 5,732 | 5,770 | Winter |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| ELY-2 | 2,712 | 2,583 | 3,136 | $0.0 \%$ | 3,136 | 3,136 | 3,136 | 3,136 | 3,136 | Winter |
| ELY-3 | 5,843 | 6,633 | 7,260 | $1.5 \%$ | 5,582 | 5,603 | 5,623 | 5,644 | 5,665 | Winter |
| ELY-4 | 5,227 | 5,083 | 6,162 | $0.0 \%$ | 6,162 | 6,162 | 6,162 | 6,162 | 6,162 | Winter |
| Bay 1 | 18,351 | 18,828 | 22,121 | $4.2 \%$ | 20,497 | 20,556 | 20,615 | 20,674 | 20,733 | Winter |
| ELY-5 | 3,653 | 3,413 | 3,967 | $0.0 \%$ | 3,967 | 3,967 | 3,967 | 3,967 | 3,967 | Winter |
| ELY-6 | 6,562 | 6,319 | 7,675 | $0.1 \%$ | 7,677 | 7,678 | 7,679 | 7,680 | 7,681 | Winter |
| ELY-7 | 4,697 | 4,428 | 5,341 | $0.0 \%$ | 4,820 | 4,820 | 4,820 | 4,820 | 4,820 | Winter |
| ELY-8 | 4,355 | 4,299 | 4,871 | $0.0 \%$ | 4,871 | 4,871 | 4,871 | 4,871 | 4,871 | Winter |
| Bay 2 | 19,266 | 18,459 | 21,853 | $0.1 \%$ | 21,334 | 21,335 | 21,336 | 21,337 | 21,338 | Winter |

Note: Southridge Sub feeders scheduled for completion Summer 2022. Permanent load shift from ELY-7 to STH-3 and from ELY-3 to STH-1, STH-2, STH-3.
Gum Street (Kennewick P.O.D.)

| GUM-1 | 6,023 | 7,195 | 5,594 | $1.2 \%$ | 7,218 | 7,235 | 7,251 | 7,267 | 7,284 | Winter |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| GUM-2 | 4,004 | 3,801 | 3,950 | $0.0 \%$ | 3,950 | 3,950 | 3,950 | 3,950 | 3,950 | Winter |
| GUM-3 | 5,458 | 5,277 | 6,015 | $0.0 \%$ | 6,015 | 6,015 | 6,015 | 6,015 | 6,015 | Winter |
| GUM-4 | 7,015 | 7,094 | 6,498 | $0.2 \%$ | 6,502 | 6,505 | 6,508 | 6,511 | 6,514 | Winter |
| Bay 1 | 22,500 | 23,366 | 22,057 | $1.4 \%$ | 23,685 | 23,705 | 23,724 | 23,743 | 23,763 | Winter |

## Table B1

Feeder Non-Coincidental Peaks - Winter

| Substation Feeder/Bay (P.O.D) |  |  |  | \% of <br> Annual <br> System <br> Growth | Projected Peak (kVA) at $0^{\circ} \mathrm{F}$ |  |  |  |  | Peak <br> Season |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 19-20 | 20-21 | 21-22 |  | 22-23 | 23-24 | 24-25 | 25-26 | 26-27 |  |
| Hedges (Hedges P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| HED-1 | 1,574 | 1,697 | 1,734 | 0.0\% | 1,734 | 1,734 | 1,734 | 1,734 | 1,734 | Winter |
| HED-2 | 6,057 | 6,088 | 5,632 | 0.0\% | 5,632 | 5,632 | 5,632 | 5,632 | 5,632 | Winter |
| HED-3 | 4,337 | 4,880 | 4,307 | 0.8\% | 4,322 | 4,333 | 4,343 | 4,353 | 4,364 | Winter |
| HED-4 | 6,416 | 6,503 | 6,152 | 1.3\% | 6,178 | 6,196 | 6,214 | 6,232 | 6,250 | Winter |
| Bay 1 | 18,385 | 19,169 | 17,826 | 2.1\% | 17,866 | 17,894 | 17,923 | 17,951 | 17,980 | Winter |
| Highlands (Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| HLS-1 | 3,431 | 4,742 | 5,415 | 1.2\% | 5,438 | 5,454 | 5,470 | 5,486 | 5,502 | Winter |
| HLS-2 | 3,781 | 3,718 | 4,133 | 0.3\% | 4,138 | 4,142 | 4,146 | 4,150 | 4,154 | Summer |
| HLS-3 | 6,220 | 6,688 | 7,260 | 2.9\% | 7,316 | 7,356 | 7,395 | 7,435 | 7,475 | Winter |
| Bay 1 | 13,432 | 15,147 | 16,808 | 4.3\% | 16,892 | 16,952 | 17,011 | 17,071 | 17,131 | Winter |
| HLS-4 | 5,133 | 4,972 | 5,812 | 0.3\% | 5,818 | 5,823 | 5,827 | 5,832 | 5,836 | Winter |
| HLS-5 | 3,251 | 3,745 | 4,539 | 12.3\% | 2,762 | 2,933 | 3,103 | 3,274 | 3,445 | Summer |
| HLS-6 | 4,834 | 4,649 | 5,286 | 0.0\% | 5,286 | 5,286 | 5,286 | 5,286 | 5,286 | Winter |
| Bay 2 | 13,218 | 13,367 | 15,636 | 12.6\% | 13,865 | 14,041 | 14,216 | 14,392 | 14,567 | Winter |
| HLS-7 | 5,065 | 5,802 | 6,273 | 0.3\% | 6,278 | 6,281 | 6,285 | 6,288 | 6,292 | Winter |
| HLS-8 | 4,971 | 4,815 | 5,599 | 0.0\% | 5,599 | 5,599 | 5,599 | 5,599 | 5,599 | Winter |
| HLS-9 | 5,766 | 5,360 | 6,531 | 1.4\% | 6,559 | 6,578 | 6,597 | 6,617 | 6,636 | Winter |
| Bay 3 | 15,801 | 15,977 | 18,403 | 1.6\% | 18,436 | 18,459 | 18,482 | 18,504 | 18,527 | Winter |

Note: Southridge Sub feeders scheduled for completion Summer 2022. Permanent load shift from HLS-5 to STH-1 and STH-4.
Kennewick (Kennewick P.O.D.)

| KEN-1 | 5,073 | 4,815 | 7,075 | 0.0\% | 7,075 | 7,075 | 7,075 | 7,075 | 7,075 | Winter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| KEN-2 | 5,279 | 5,378 | 4,612 | 0.0\% | 4,612 | 4,612 | 4,612 | 4,612 | 4,612 | Winter |
| KEN-3 | 6,639 | 6,633 | 6,334 | 0.1\% | 6,336 | 6,338 | 6,340 | 6,341 | 6,343 | Winter |
| Bay 1 | 16,991 | 16,826 | 18,022 | 0.1\% | 18,024 | 18,026 | 18,027 | 18,029 | 18,031 | Winter |
| KEN-4 | 5,946 | 6,245 | 5,450 | 1.0\% | 6,264 | 6,278 | 6,292 | 6,305 | 6,319 | Winter |
| KEN-5 | 5,552 | 5,304 | 5,230 | 0.0\% | 5,230 | 5,230 | 5,230 | 5,230 | 5,230 | Winter |
| KEN-6 | 5,835 | 6,079 | 5,352 | 0.0\% | 6,079 | 6,079 | 6,079 | 6,079 | 6,079 | Summer |
| Bay 2 | 17,333 | 17,629 | 16,032 | 1.0\% | 17,573 | 17,587 | 17,600 | 17,614 | 17,628 | Winter |
| KEN-7 | 5,244 | 5,083 | 4,263 | 0.0\% | 4,263 | 4,263 | 4,263 | 4,263 | 4,263 | Summer |
| KEN-8 | 7,588 | 8,145 | 7,070 | 0.3\% | 7,075 | 7,079 | 7,082 | 7,086 | 7,089 | Winter |
| KEN-9 | 3,816 | 3,635 | 3,549 | 0.6\% | 3,560 | 3,568 | 3,576 | 3,584 | 3,592 | Winter |
| Bay 3 | 16,648 | 16,863 | 14,882 | 0.8\% | 14,898 | 14,909 | 14,921 | 14,932 | 14,944 | Winter |
| Leslie Road (Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| LES-1 | 5,689 | 5,535 | 6,026 | 0.8\% | 6,041 | 6,052 | 6,063 | 6,075 | 6,086 | Winter |
| LES-2 | 3,123 | 3,238 | 2,567 | 1.2\% | 2,591 | 2,609 | 2,626 | 2,643 | 2,661 | Summer |
| LES-3 | 3,200 | 3,256 | 3,050 | 0.0\% | 3,050 | 3,050 | 3,050 | 3,050 | 3,050 | Winter |
| LES-4 | 1,754 | 1,836 | 1,004 | 0.0\% | 2,678 | 2,678 | 2,678 | 2,678 | 2,678 | Summer |
| Bay 1 | 13,765 | 13,865 | 12,647 | 2.0\% | 14,360 | 14,389 | 14,417 | 14,446 | 14,474 | Winter |

Note: Out years assume completion of FYP \#115. Permanent load shift from RTA-1 to LES-4.

## Table B1

Feeder Non-Coincidental Peaks - Winter

| Substation Feeder/Bay (P.O.D) |  |  |  | \% of Annual | Projected Peak (kVA) at $0^{\circ} \mathrm{F}$ |  |  |  |  | Peak Season |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 19-20 | 20-21 | 21-22 | Growth | 22-23 | 23-24 | 24-25 | 25-26 | 26-27 |  |
| Orchard View (Kennewick P.O.D.) | Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |
| ORV-1 | - | - | - | 0.0\% | - | - | - | - | - | - |
| ORV-2 | 3,585 | 5,387 | 4,216 | 3.3\% | 5,452 | 5,499 | 5,545 | 5,591 | 5,637 | Summer |
| ORV-3 | 5,184 | 5,240 | 7,029 | 4.9\% | 7,126 | 7,195 | 7,264 | 7,332 | 7,401 | Winter |
| ORV-4 | - | 3,155 | 3,210 | 4.3\% | 3,295 | 3,355 | 3,415 | 3,474 | 3,534 | Summer |
| Bay 1 | 8,769 | 13,782 | 14,455 | 12.5\% | 15,874 | 16,048 | 16,223 | 16,398 | 16,572 | Winter |
| ORV-5 | 4,440 | 5,175 | 6,301 | 4.5\% | 6,389 | 6,451 | 6,514 | 6,576 | 6,639 | Winter |
| ORV-6 | 4,817 | 4,603 | 5,249 | 0.1\% | 5,251 | 5,253 | 5,254 | 5,256 | 5,258 | Summer |
| ORV-7 | - | - | - | 0.0\% | - | - | - | - | - | - |
| ORV-8 | - | - | - | 0.0\% | - | - | - | - | - | - |
| Bay 2 | 9,257 | 9,778 | 11,549 | 4.6\% | 11,640 | 11,704 | 11,768 | 11,832 | 11,896 | Winter |
| Note: Orchard View Bay 2 energized Fall 2019. Permanent load shifts from ORV-1 to ORV-5 and ORV-4 to ORV-6. |  |  |  |  |  |  |  |  |  |  |
| Note: ORV-4 buildout to Vista Field completed in fall 2020. |  |  |  |  |  |  |  |  |  |  |
| Phillips (Hedges P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| PHL-6 | 103 | 157 | 157 | 0.0\% | 157 | 157 | 157 | 157 | 157 | Summer |
| PHL-7 | 4,235 | 4,732 | 4,732 | 5.1\% | 4,833 | 4,904 | 4,975 | 5,046 | 5,117 | Winter |
| Bay 4 | 4,337 | 4,889 | 4,889 | 5.1\% | 4,990 | 5,061 | 5,132 | 5,203 | 5,274 | Summer |


| Note: Feed | growth | uted to | ition of |  | offloa | proxim |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Prosser | P.O.D.) |  |  |  |  |  |  |  |  |  |
| PSR-1 | 4,406 | 4,539 | 4,317 | 0.1\% | 4,541 | 4,543 | 4,545 | 4,546 | 4,548 | Winter |
| PSR-2 | 3,730 | 3,718 | 3,847 | 0.0\% | 3,847 | 3,847 | 3,847 | 3,847 | 3,847 | Winter |
| PSR-3 | 5,946 | 6,042 | 6,328 | 0.0\% | 6,329 | 6,330 | 6,330 | 6,331 | 6,331 | Winter |
| Bay 1 | 14,082 | 14,298 | 14,492 | 0.0\% | 14,717 | 14,719 | 14,721 | 14,724 | 14,726 | Winter |
| PSR-4 | 5,732 | 5,452 | 5,765 | 0.0\% | 5,765 | 5,765 | 5,765 | 5,765 | 5,765 | Winter |
| PSR-5 | 1,395 | 1,301 | 1,255 | 0.0\% | 1,301 | 1,301 | 1,301 | 1,301 | 1,301 | Winter |
| PSR-6 | 5,655 | 5,230 | 5,885 | 0.2\% | 5,889 | 5,892 | 5,895 | 5,897 | 5,900 | Winter |
| REA | 8,400 | 7,700 | 7,390 | 1.0\% | 7,410 | 7,484 | 7,559 | 7,634 | 7,711 | Summer |
| Bay 2 | 21,182 | 19,683 | 20,295 | 0.2\% | 20,365 | 20,442 | 20,519 | 20,598 | 20,677 | Winter |
| Reata (Ken | kP.O.D |  |  |  |  |  |  |  |  |  |
| RTA-1 | 2,028 | 4,649 | 4,783 | 1.3\% | 6,644 | 6,662 | 6,680 | 6,698 | 6,716 | Winter |
| RTA-2 | 8,778 | 9,197 | 9,158 | 2.0\% | 5,555 | 5,583 | 5,611 | 5,640 | 5,668 | Winter |
| RTA-3 | 6,288 | 3,911 | 4,121 | 0.7\% | 4,136 | 4,147 | 4,157 | 4,167 | 4,178 | Winter |
| RTA-4 | 3,679 | 3,563 | 3,541 | 0.0\% | 3,563 | 3,563 | 3,563 | 3,563 | 3,563 | Winter |
| Bay 1 | 20,772 | 21,321 | 21,604 | 4.1\% | 19,899 | 19,955 | 20,012 | 20,069 | 20,126 | Winter |

Note: RTA-3 to RTA-1 offload completed fall 2020.
Note: Out years assume completion of FYP \#115. Permanent load shift from RTA-1 to LES-4 \& RTA-2 to RTA-1.

| Riverfront (Prosser P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| RVF-1 | 5,133 | 5,286 | 4,975 | $0.0 \%$ | 4,975 | 4,975 | 4,975 | 4,975 | 4,975 | Winter |
| RVF-2 | 385 | 249 | 517 | $0.0 \%$ | 517 | 517 | 517 | 517 | 517 | Winter |
| RVF-3 | 4,654 | 4,732 | 4,812 | $1.0 \%$ | 4,832 | 4,847 | 4,861 | 4,876 | 4,890 | Winter |
| Bay 1 | 10,172 | 10,267 | 10,304 | $1.0 \%$ | 10,324 | 10,339 | 10,353 | 10,368 | 10,382 | Winter |

## Table B1

Feeder Non-Coincidental Peaks - Winter

| Substation Feeder/Bay (P.O.D) | 1.15 | 1.24 | 1.18 | \% of <br> Annual System Growth | Projected Peak (kVA) at $0^{\circ} \mathrm{F}$ |  |  |  |  | Peak <br> Season |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 19-20 | 20-21 | 21-22 |  | 22-23 | 23-24 | 24-25 | 25-26 | 26-27 |  |
| Southridge (Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| STH-1 | - | - | - | 10.1\% | 1,497 | 1,511 | 1,526 | 1,540 | 1,555 | Summer |
| STH-2 | - | - | - | 3.4\% | 761 | 776 | 790 | 804 | 819 | Winter |
| STH-3 | - | - | - | 2.6\% | 936 | 936 | 936 | 936 | 936 | Summer |
| STH-4 | - | - | - | 17.4\% | 1,123 | 1,264 | 1,404 | 1,545 | 1,685 | Summer |
| Bay 1 | - |  |  | 16.1\% | 3,194 | 3,223 | 3,252 | 3,281 | 3,310 | Summer |

Note: Southridge Sub feeders scheduled for energization Spring 2022.
Note: Permanent load shift from ELY-7 to STH-3, ELY-3 to STH-1, STH-2, STH-3, and HLS-5 to STH-1 and STH-4.
Sunset Road (Benton City P.O.D.)

| SSR-1 | 3,191 | 3,487 | 4,575 | $0.0 \%$ | 4,575 | 4,575 | 4,575 | 4,575 | 4,575 | Winter |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| SSR-2 | 3,653 | 3,321 | 4,151 | $0.1 \%$ | 4,152 | 4,153 | 4,154 | 4,156 | 4,157 | Winter |
| SSR-3 | 1,951 | 2,933 | 1,937 | $0.0 \%$ | 2,933 | 2,933 | 2,933 | 2,933 | 2,933 | Summer |
| SSR-4 | 2,284 | 2,684 | 3,883 | $0.4 \%$ | 1,755 | 1,760 | 1,765 | 1,770 | 1,774 | Winter |
| Bay 1 | 11,079 | 12,426 | 14,547 | $0.1 \%$ | 11,661 | 11,662 | 11,663 | 11,665 | 11,666 | Winter |

Note: RTA-2 load past L70R shifted to SSR-4 during SSR-4 peak for load banacing purposes.
Vista (Kennewick P.O.D.)

| VTA-1 | 2,079 | 1,993 | 2,343 | 0.0\% | 2,343 | 2,343 | 2,343 | 2,343 | 2,343 | Summer |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VTA-2 | 3,893 | 2,684 | 3,377 | 0.0\% | 3,377 | 3,377 | 3,377 | 3,377 | 3,377 | Winter |
| VTA-3 | 2,498 | 2,352 | 2,239 | 0.0\% | 2,239 | 2,239 | 2,239 | 2,239 | 2,239 | Winter |
| VTA-4 | 5,535 | 6,227 | 4,754 | 0.0\% | 6,227 | 6,227 | 6,227 | 6,227 | 6,227 | Summer |
| Bay 1 | 14,005 | 13,256 | 12,714 | 0.0\% | 14,186 | 14,186 | 14,186 | 14,186 | 14,186 | Summer |
| VTA-5 | 5,364 | 4,981 | 5,096 | 0.0\% | 5,096 | 5,096 | 5,096 | 5,096 | 5,096 | Winter |
| VTA-6 | 1,728 | 1,633 | 1,848 | 0.0\% | 1,848 | 1,848 | 1,848 | 1,848 | 1,848 | Summer |
| VTA-7 | 4,842 | 4,428 | 5,176 | 0.0\% | 5,176 | 5,176 | 5,176 | 5,176 | 5,176 | Summer |
| VTA-8 | 6,562 | 6,365 | 5,995 | 0.0\% | 6,365 | 6,365 | 6,365 | 6,365 | 6,365 | Winter |
| Bay 2 | 18,496 | 17,407 | 18,114 | 0.0\% | 18,485 | 18,485 | 18,485 | 18,485 | 18,485 | Winter |
| Zephyr Heights (Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| ZEH-1 | 3,396 | 4,013 | 4,188 | 3.6\% | 4,258 | 4,308 | 4,358 | 4,407 | 4,457 | Winter |
| ZEH-2 | 4,851 | 5,064 | 5,904 | 1.6\% | 5,935 | 5,957 | 5,979 | 6,001 | 6,023 | Winter |
| ZEH-3 | 496 | 803 | 507 | 0.0\% | 507 | 507 | 507 | 507 | 507 | Summer |
| Bay 1 | 8,743 | 9,880 | 10,599 | 5.2\% | 10,701 | 10,772 | 10,844 | 10,916 | 10,988 | Winter |
| Continguous P.O.D. Totals (PUD Only) |  |  |  |  |  |  |  |  |  |  |
| Benton City | 22,577 | 23,984 | 28,172 | 2.7\% | 25,338 | 25,376 | 25,414 | 25,451 | 25,489 | Winter |
| Hedges | 22,723 | 24,058 | 22,715 | 7.2\% | 22,855 | 22,955 | 23,054 | 23,154 | 23,254 | Winter |
| Kennewick | 269,524 | 277,530 | 291,877 | 48.2\% | 293,135 | 293,805 | 294,476 | 295,147 | 295,817 | Winter |
| Prosser | 37,036 | 36,549 | 37,701 | 1.3\% | 37,996 | 38,016 | 38,035 | 38,055 | 38,074 | Winter |
| Total | 351,859 | 362,121 | 380,465 | 59\% | 379,324 | 380,152 | 380,979 | 381,807 | 382,634 | Winter |
| Miscellaneous Substations \& P.O.D.'s |  |  |  |  |  |  |  |  |  |  |
| 251 (DOE) | 153 | 122 | 153 | 0.0\% | 162 | 162 | 162 | 162 | 162 |  |
| 451B (Ligo) | 1,409 | 1,388 | 1,409 | 0.0\% | 1,015 | 1,015 | 1,015 | 1,015 | 1,015 |  |
| Chevron | 8,044 | 8,606 | 8,494 | 0.0\% | 8,100 | 8,100 | 8,100 | 8,100 | 8,100 |  |
| Cold Creek | 281 | 283 | 347 | 0.0\% | 1,448 | 1,448 | 1,448 | 1,448 | 1,448 |  |
| Phillips 1,2,3 | 1,300 | 1,327 | 1,079 | 0.0\% | 1,450 | 1,450 | 1,450 | 1,450 | 1,450 |  |
| Total | 11,186 | 11,724 | 11,481 | 0.0\% | 12,175 | 12,175 | 12,175 | 12,175 | 12,175 |  |


| Table B2 <br> Feeder Non-Coincidental Peaks - Summer |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Substation <br> Feeder/Bay <br> (P.O.D) |  |  |  | \% of Annual System Growth | Projected Peak (kVA) at $104^{\mathbf{\circ}} \mathrm{F}$ |  |  |  |  | Peak Season |
|  | 2019 | 2020 | 2021 |  | 2022 | 2023 | 2024 | 2025 | 2026 |  |
| Angus (Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| ANG-9 | 3,574 | 3,578 | 6,447 | 0.0\% | 3,918 | 3,918 | 3,918 | 3,918 | 3,918 | Winter |
| ANG-1 | 3,169 | 3,816 | 2,723 | 0.0\% | 3,816 | 3,816 | 3,816 | 3,816 | 3,816 | Winter |
| ANG-2 | 3,498 | 3,526 | 3,710 | 0.0\% | 3,710 | 3,710 | 3,710 | 3,710 | 3,710 | Winter |
| Bay 3 | 10,241 | 10,921 | 12,880 | 0.0\% | 11,444 | 11,444 | 11,444 | 11,444 | 11,444 | Winter |
| ANG-3 | 4,300 | 4,040 | 4,086 | 0.0\% | 4,086 | 4,086 | 4,086 | 4,086 | 4,086 | Winter |
| ANG-4 | 3,971 | 3,578 | 2,327 | 0.0\% | 4,029 | 4,029 | 4,029 | 4,029 | 4,029 | Winter |
| ANG-5 | 3,689 | 3,496 | 5,681 | 0.0\% | 3,537 | 3,537 | 3,537 | 3,537 | 3,537 | Winter |
| Bay 1 | 11,960 | 11,114 | 12,094 | 0.0\% | 11,652 | 11,652 | 11,652 | 11,652 | 11,652 | Winter |
| ANG-6 | 4,025 | 3,787 | 3,675 | 0.2\% | 3,790 | 3,793 | 3,797 | 3,801 | 3,805 | Winter |
| ANG-7 | 3,261 | 2,953 | 4,688 | 0.0\% | 2,764 | 2,764 | 2,764 | 2,764 | 2,764 | Winter |
| ANG-8 | 3,513 | 3,422 |  | 0.0\% | 4,286 | 4,286 | 4,286 | 4,286 | 4,286 | Winter |
| Bay 2 | 10,799 | 10,162 | 8,364 | 0.2\% | 10,840 | 10,843 | 10,847 | 10,851 | 10,855 | Winter |
| Note: Feeder ANG-8 was switched onto ANG-5 and ANG-9 during 2021 summer peak due to a get-away cable failure. |  |  |  |  |  |  |  |  |  |  |
| Note: Feeder ANG-4 partially switched to VIS-7 to balance bays to support ANG-8 get-away failure. |  |  |  |  |  |  |  |  |  |  |
| Benton City (Benton City P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| BEC-1 | 3,460 | 3,496 | 3,436 | 0.0\% | 3,497 | 3,498 | 3,498 | 3,499 | 3,499 | Winter |
| BEC-2 | 2,704 | 2,842 | 2,854 | 2.6\% | 2,886 | 2,927 | 2,968 | 3,009 | 3,049 | Winter |
| BEC-3 | - | - | - | 0.0\% | - | - | - | - | - | Winter |
| BEC-4 | - | - |  | 0.0\% | - | - | - | - | - | Winter |
| REA | 2,000 | 2,000 | 2,000 |  | 2,000 | 2,000 | 2,000 | 2,000 | 2,000 | Winter |
| Bay 1 | 8,163 | 8,338 | 8,290 | 2.6\% | 8,383 | 8,425 | 8,466 | 8,507 | 8,549 | Winter |
| Notes: REA load went away in 11-12 due to their new substation. Projected value of 2,000 kVA is a reserved capacity value. |  |  |  |  |  |  |  |  |  |  |
| Note: Benton City rebuild completed fall 2019. BEC-3, BEC-4 currently spare positions. |  |  |  |  |  |  |  |  |  |  |
| Note: BEC-3 buildout anticipated spring 2023. |  |  |  |  |  |  |  |  |  |  |
| Cold Creek (Cold Creek P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| CCR-1 | 3,765 | 4,040 | 4,079 | 0.0\% | 4,079 | 4,079 | 4,079 | 4,079 | 4,079 | Summer |
| Bay 1 | 3,765 | 4,040 | 4,079 | - | 4,079 | 4,079 | 4,079 | 4,079 | 4,079 | Summer |
| Notes: Cold Creek added to 5 Year Plan in 2018. |  |  |  |  |  |  |  |  |  |  |
| Ely (Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| ELY-1 | 2,566 | 2,760 | 2,580 | 2.8\% | 2,794 | 2,837 | 2,881 | 2,924 | 2,967 | Winter |
| ELY-2 | 1,573 | 1,726 | 1,711 | 0.0\% | 1,726 | 1,726 | 1,726 | 1,726 | 1,726 | Winter |
| ELY-3 | 5,850 | 6,026 | 6,392 | 1.5\% | 6,411 | 4,433 | 4,456 | 4,479 | 4,503 | Winter |
| ELY-4 | 4,094 | 7,305 | 4,421 | 0.0\% | 4,421 | 4,421 | 4,421 | 4,421 | 4,421 | Winter |
| Bay 1 | 14,083 | 17,817 | 15,105 | 4.2\% | 15,352 | 13,417 | 13,484 | 13,551 | 13,617 | Winter |
| ELY-5 | 3,811 | 5,088 | 3,949 | 0.0\% | 3,949 | 3,949 | 3,949 | 3,949 | 3,949 | Winter |
| ELY-6 | 4,330 | - | 4,538 | 0.1\% | 4,539 | 4,540 | 4,541 | 4,542 | 4,544 | Winter |
| ELY-7 | 4,682 | - | 4,921 | 0.0\% | 4,921 | 4,610 | 4,610 | 4,610 | 4,610 | Winter |
| ELY-8 | 3,192 | 3,072 | 3,025 | 0.0\% | 3,025 | 3,025 | 3,025 | 3,025 | 3,025 | Winter |
| Bay 2 | 16,015 | 8,161 | 16,433 | 0.1\% | 16,434 | 16,124 | 16,125 | 16,127 | 16,128 | Winter |
| Note: Southridge Sub feeders scheduled for completion Summer 2022. Permanent load shift from ELY-7 to STH-3 and from ELY-3 to STH-1, STH-2, STH-3. |  |  |  |  |  |  |  |  |  |  |
| Note: Additional load switched onto ELY-4 during 2020 peak to support Ely Bay 2 relay upgrade project. |  |  |  |  |  |  |  |  |  |  |
| Note: ELY-6 and ELY-7 switched out during 2020 peak as part of Ely Bay 2 relay upgrade project. |  |  |  |  |  |  |  |  |  |  |
| Gum Street (Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| GUM-1 | 3,177 | 4,783 | 3,141 | 1.2\% | 3,156 | 3,174 | 3,193 | 3,211 | 3,230 | Winter |
| GUM-2 | 2,261 | 4,240 | 2,423 | 0.0\% | 2,423 | 2,423 | 2,423 | 2,423 | 2,423 | Winter |
| GUM-3 | 3,124 | 3,162 | 3,121 | 0.0\% | 3,162 | 3,162 | 3,162 | 3,162 | 3,162 | Winter |
| GUM-4 | 4,781 | 4,761 | 4,627 | 0.2\% | 4,764 | 4,767 | 4,771 | 4,774 | 4,778 | Winter |
| Bay 1 | 13,342 | 16,947 | 13,312 | 1.4\% | 13,504 | 13,526 | 13,548 | 13,570 | 13,592 | Winter |
| Note: Additional load switched onto GUM-1 \& GUM-2 during 2020 peak to support Ely Bay 2 relay upgrade project. |  |  |  |  |  |  |  |  |  |  |


| Table B2 <br> Feeder Non-Coincidental Peaks - Summer |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Substation Feeder/Bay (P.O.D) | 1.03 | $\begin{gathered} 1.00 \\ \hline 2020 \\ \hline \end{gathered}$ |  | \% of Annual System Growth | Projected Peak (kVA) at $104^{\mathbf{\circ}} \mathrm{F}$ |  |  |  |  | Peak Season |
|  |  |  | 2021 |  | 2022 | 2023 | 2024 | 2025 | 2026 |  |
| Hedges (Hedges P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| HED-1 | 901 | 759 | 814 | 0.0\% | 814 | 814 | 814 | 814 | 814 | Winter |
| HED-2 | 4,796 | 4,441 | 4,914 | 0.0\% | 4,914 | 4,914 | 4,914 | 4,914 | 4,914 | Winter |
| HED-3 | 2,673 | 2,805 | 2,656 | 0.8\% | 2,814 | 2,826 | 2,838 | 2,849 | 2,861 | Winter |
| HED-4 | 4,063 | 4,218 | 4,154 | 1.3\% | 4,234 | 4,255 | 4,275 | 4,296 | 4,316 | Winter |
| Bay 1 | 12,433 | 12,223 | 12,539 | 2.1\% | 12,777 | 12,809 | 12,841 | 12,874 | 12,906 | Winter |
| Highlands (Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| HLS-1 | 3,093 | 3,370 | 2,840 | 1.2\% | 3,384 | 3,402 | 3,421 | 3,439 | 3,457 | Winter |
| HLS-2 | 5,338 | 6,100 | 5,708 | 0.3\% | 6,104 | 6,108 | 6,113 | 6,117 | 6,122 | Summer |
| HLS-3 | 5,942 | 4,873 | 5,701 | 2.9\% | 5,736 | 5,781 | 5,826 | 5,871 | 5,916 | Winter |
| Bay 1 | 14,373 | 14,343 | 14,250 | 4.3\% | 15,225 | 15,292 | 15,360 | 15,427 | 15,495 | Winter |
| HLS-4 | 3,238 | 3,251 | 3,265 | 0.3\% | 3,269 | 3,274 | 3,279 | 3,284 | 3,289 | Winter |
| HLS-5 | 4,460 | 7,439 | 5,776 | 12.3\% | 5,928 | 3,322 | 3,515 | 3,708 | 3,902 | Summer |
| HLS-6 | 2,933 | 3,013 | 3,607 | 0.0\% | 3,607 | 3,607 | 3,607 | 3,607 | 3,607 | Winter |
| Bay 2 | 10,631 | 13,703 | 12,648 | 12.6\% | 12,804 | 10,202 | 10,401 | 10,599 | 10,798 | Winter |
| HLS-7 | 3,704 | 3,913 | 3,716 | 0.3\% | 3,916 | 3,920 | 3,924 | 3,928 | 3,932 | Winter |
| HLS-8 | 2,940 | 5,624 | 2,929 | 0.0\% | 2,929 | 2,929 | 2,929 | 2,929 | 2,929 | Winter |
| HLS-9 | 4,651 | 4,523 | 4,661 | 1.4\% | 4,678 | 4,700 | 4,722 | 4,744 | 4,766 | Winter |
| Bay 3 | 11,295 | 14,060 | 11,307 | 1.6\% | 11,524 | 11,550 | 11,575 | 11,601 | 11,627 | Winter |
| Note: Southridge Sub feeders scheduled for completion Summer 2022. Permanent load shift from HLS-5 to STH-1 and STH-4. |  |  |  |  |  |  |  |  |  |  |
| Note: Feeder ELY-8 switched onto HLS-8 during 2020 peak due to Ely Bay 1 relay upgrade project. |  |  |  |  |  |  |  |  |  |  |
| Note: Feeder HLS-5 was switched with additional load during 2020 peak due to Ely Bay 1 relay upgrade project. |  |  |  |  |  |  |  |  |  |  |
| Kennewick (Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| KEN-1 | 6,262 | 4,263 | 4,620 | 0.0\% | 4,620 | 4,620 | 4,620 | 4,620 | 4,620 | Winter |
| KEN-2 | 3,208 | 3,727 | 3,237 | 0.0\% | 3,727 | 3,727 | 3,727 | 3,727 | 3,727 | Winter |
| KEN-3 | 4,529 | 4,493 | 4,743 | 0.1\% | 4,495 | 4,497 | 4,499 | 4,501 | 4,502 | Winter |
| Bay 1 | 13,999 | 12,483 | 12,600 | 0.1\% | 12,842 | 12,844 | 12,846 | 12,847 | 12,849 | Winter |
| KEN-4 | 4,559 | 4,426 | 4,148 | 1.0\% | 4,438 | 4,454 | 4,469 | 4,485 | 4,500 | Winter |
| KEN-5 | 3,276 | 5,475 | 3,224 | 0.0\% | 3,224 | 3,224 | 3,224 | 3,224 | 3,224 | Winter |
| KEN-6 | 6,102 | 4,947 | 6,550 | 0.0\% | 6,550 | 6,550 | 6,550 | 6,550 | 6,550 | Summer |
| Bay 2 | 13,938 | 14,849 | 13,921 | 1.0\% | 14,212 | 14,227 | 14,243 | 14,258 | 14,273 | Winter |
| KEN-7 | 3,811 | 3,675 | 4,579 | 0.0\% | 4,579 | 4,579 | 4,579 | 4,579 | 4,579 | Summer |
| KEN-8 | 5,018 | 4,880 | 5,188 | 0.3\% | 5,191 | 5,195 | 5,199 | 5,203 | 5,207 | Winter |
| KEN-9 | 2,322 | 2,314 | 3,367 | 0.6\% | 3,374 | 3,384 | 3,393 | 3,402 | 3,411 | Winter |
| Bay 3 | 11,150 | 10,869 | 13,134 | 0.8\% | 13,144 | 13,157 | 13,170 | 13,183 | 13,196 | Winter |
| Note: Feeder KEN-5 was switched with additional load during 2020 peak due to Ely Bay 1 relay upgrade project. |  |  |  |  |  |  |  |  |  |  |
| Leslie Road (Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| LES-1 | 3,001 | 3,355 | 3,449 | 0.8\% | 3,459 | 3,472 | 3,484 | 3,497 | 3,509 | Winter |
| LES-2 | 2,650 | 3,973 | 3,792 | 1.2\% | 3,988 | 4,008 | 4,027 | 4,047 | 4,067 | Summer |
| LES-3 | 1,634 | 1,741 | 1,533 | 0.0\% | 1,741 | 1,741 | 1,741 | 1,741 | 1,741 | Winter |
| LES-4 | 901 | 900 | 1,732 | 0.0\% | 2,521 | 2,521 | 2,521 | 2,521 | 2,521 | Summer |
| Bay 1 | 8,187 | 9,969 | 10,506 | 2.0\% | 11,710 | 11,742 | 11,774 | 11,806 | 11,838 | Winter |
| Note: LES-2 partially loaded with ORV-2 during 2021 peak for load balancing. |  |  |  |  |  |  |  |  |  |  |

Note: Out years assume completion of FYP \#115. Permanent load shift from RTA-1 to LES-4.

| Table B2 <br> Feeder Non-Coincidental Peaks - Summer |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Substation Feeder/Bay (P.O.D) |  |  |  | \% of <br> Annual |  | Projecte | eak (kV | t $104{ }^{\circ} \mathrm{F}$ |  |  |
|  | 2019 | 2020 | 2021 | Growth | 2022 | 2023 | 2024 | 2025 | 2026 |  |
| Orchard View (Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| ORV-1 | 5,552 | - | - | 0.0\% | - | - | - | - | - | - |
| ORV-2 | 2,383 | 2,418 | 5,804 | 3.3\% | 2,486 | 2,538 | 2,590 | 2,642 | 2,695 | Summer |
| ORV-3 | 3,093 | 3,846 | 4,230 | 4.9\% | 4,291 | 4,368 | 4,446 | 4,524 | 4,602 | Winter |
| ORV-4 | 5,430 | - | 3,997 | 4.3\% | 4,050 | 4,118 | 4,186 | 4,253 | 4,321 | Summer |
| Bay 1 | 16,458 | 6,264 | 14,031 | 12.5\% | 10,827 | 11,025 | 11,222 | 11,420 | 11,617 | Winter |
| ORV-5 | - | 4,248 | 4,065 | 4.5\% | 4,303 | 4,374 | 4,445 | 4,515 | 4,586 | Winter |
| ORV-6 | - | 5,669 | 5,366 | 0.1\% | 7,506 | 7,508 | 7,510 | 7,512 | 7,514 | Summer |
| ORV-7 | - | - | - | 0.0\% | - | - | - | - | - | - |
| ORV-8 | - | - | - | 0.0\% | - | - | - | - | - | - |
| Bay 2 |  | 9,917 | 9,431 | 4.6\% | 11,810 | 11,882 | 11,955 | 12,027 | 12,100 | Winter |
| Note: ORV-4 buildout to Vista Field completed fall 2020. |  |  |  |  |  |  |  |  |  |  |
| Note: Orchard View Bay 2 energized Fall 2019. Permanent load shifts from ORV-1 to ORV-5 and ORV-4 to ORV-6. |  |  |  |  |  |  |  |  |  |  |
| Note: ORV-2 partially loaded with ORV-6 \& VIS-8 and partially offloaded to LES-2 during 2021 peak for load balancing. |  |  |  |  |  |  |  |  |  |  |
| Note: ORV-1, ORV-7, ORV-8 currently spare circuits. Intention is to build out to west end of Bob Olsen Pkwy area. |  |  |  |  |  |  |  |  |  |  |
| Phillips (Hedges P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| PHL-6 | 6,438 | 5,914 | 5,284 | 0.0\% | 5,914 | 5,914 | 5,914 | 5,914 | 5,914 | Summer |
| PHL-7 | 3,551 | 3,325 | 3,395 | 5.1\% | 3,458 | 3,538 | 3,618 | 3,699 | 3,779 | Winter |
| Bay 4 | 9,989 | 9,240 | 8,678 | 5.1\% | 9,372 | 9,452 | 9,533 | 9,613 | 9,693 | Summer |
| Prosser (Prosser P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| PSR-1 | 5,522 | 4,389 | 4,004 | 0.1\% | 4,005 | 4,007 | 4,009 | 4,011 | 4,013 | Winter |
| PSR-2 | 2,940 | 2,723 | 2,484 | 0.0\% | 2,723 | 2,723 | 2,723 | 2,723 | 2,723 | Winter |
| PSR-3 | 5,262 | 4,962 | 5,202 | 0.0\% | 5,202 | 5,203 | 5,203 | 5,204 | 5,205 | Winter |
| Bay 1 | 13,724 | 12,074 | 11,690 | 0.2\% | 11,930 | 11,933 | 11,935 | 11,938 | 11,941 | Winter |
| PSR-4 | 5,995 | 5,416 | 5,072 | 0.0\% | 5,416 | 5,416 | 5,416 | 5,416 | 5,416 | Winter |
| PSR-5 | 863 | 789 | - | 0.0\% | 771 | 771 | 771 | 771 | 771 | Winter |
| PSR-6 | 3,864 | 3,749 | 3,648 | 0.2\% | 3,752 | 3,755 | 3,758 | 3,761 | 3,764 | Winter |
| REA | 7,520 | 8,010 | 8,210 | 1.0\% | 8,222 | 8,305 | 8,388 | 8,472 | 8,556 | Summer |
| Bay 2 | 18,243 | 17,964 | 16,929 | 0.2\% | 18,161 | 18,246 | 18,332 | 18,419 | 18,507 | Winter |
| Note: PRO-5 was switched to RVF-3 during 2021 peak for load balancing purposes. |  |  |  |  |  |  |  |  |  |  |
| Reata (Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| RTA-1 | 832 | 2,247 | 2,573 | 1.3\% | 3,440 | 3,461 | 3,481 | 3,501 | 3,522 | Winter |
| RTA-2 | 5,445 | 6,256 | 5,900 | 2.0\% | 4,003 | 4,035 | 4,067 | 4,099 | 4,131 | Winter |
| RTA-3 | 3,971 | 2,857 | 2,238 | 0.7\% | 2,866 | 2,878 | 2,890 | 2,901 | 2,913 | Winter |
| RTA-4 | 2,077 | 1,994 | 2,087 | 0.0\% | 2,087 | 2,087 | 2,087 | 2,087 | 2,087 | Winter |
| Bay 1 | 12,326 | 13,354 | 12,799 | 0 | 12,396 | 12,461 | 12,525 | 12,589 | 12,653 | Winter |
| Note: RTA-3 to RTA-1 offload completed fall 2020. <br> Note: RTA-2 load past L70R shifted to SSR-4 during 2021 peak for load banacing purposes. <br> Note: Out years assume completion of FYP \#115. Permanent load shift from RTA-1 to LES-4 \& RTA-2 to RTA-1. |  |  |  |  |  |  |  |  |  |  |
| Riverfront (Prosser P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| RVF-1 | 4,246 | 4,471 | 3,593 | 0.0\% | 4,471 | 4,471 | 4,471 | 4,471 | 4,471 | Winter |
| RVF-2 | 412 | 268 | 459 | 0.0\% | 268 | 268 | 268 | 268 | 268 | Winter |
| RVF-3 | 2,696 | 2,760 | 3,319 | 1.0\% | 2,638 | 2,654 | 2,671 | 2,687 | 2,703 | Winter |
| Bay 1 | 7,355 | 7,499 | 7,371 | 1.0\% | 7,377 | 7,393 | 7,409 | 7,426 | 7,442 | Winter |
| Note: PRO-5 was switched on RVF-3 during 2021 peak for load balancing purposes. Southridge (Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| STH-1 | - | - | - | 10.1\% | - | 2,135 | 2,260 | 2,384 | 2,509 | Summer |
| STH-2 | - | - | - | 3.4\% | - | 743 | 785 | 828 | 870 | Winter |
| STH-3 | - | - | - | 2.6\% | - | 1,177 | 1,210 | 1,242 | 1,274 | Summer |
| STH-4 | - | - | - | 17.4\% | - | 1,412 | 1,627 | 1,843 | 2,059 | Summer |
| Bay 1 | - | - | - | 16.1\% | - | 5,467 | 5,882 | 6,297 | 6,712 | Summer |
| Note: Southridge Sub feeders scheduled to be completed August 2022. <br> Note: Permanent load shift from ELY-7 to STH-3, ELY-3 to STH-1, STH-2, STH-3, and HLS-5 to STH-1 and STH-4. |  |  |  |  |  |  |  |  |  |  |


| Table B2 <br> Feeder Non-Coincidental Peaks - Summer |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Substation Feeder/Bay (P.O.D) |  |  |  | \% of Annual System Growth | Projected Peak (kVA) at $104^{\mathbf{\circ}} \mathrm{F}$ |  |  |  |  | Peak Season |
|  | 2019 | 2020 | 2021 |  | 2022 | 2023 | 2024 | 2025 | 2026 |  |
| Sunset Road (Benton City P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| SSR-1 | 4,155 | 4,553 | 4,011 | 0.0\% | 4,553 | 4,553 | 4,553 | 4,553 | 4,553 | Winter |
| SSR-2 | 2,719 | 3,110 | 2,703 | 0.1\% | 3,111 | 3,112 | 3,113 | 3,114 | 3,116 | Winter |
| SSR-3 | 5,209 | 4,672 | 4,414 | 0.0\% | 4,672 | 4,672 | 4,672 | 4,672 | 4,672 | Summer |
| SSR-4 | 3,414 | 2,842 | 3,381 | 0.4\% | 3,385 | 3,391 | 3,396 | 3,402 | 3,407 | Winter |
| Bay 1 | 15,496 | 15,176 | 14,510 | 0.1\% | 15,721 | 12,337 | 12,338 | 12,339 | 12,340 | Winter |
| Note: RTA-2 load past L70R shifted to SSR-4 during 2021 peak for load banacing purposes. |  |  |  |  |  |  |  |  |  |  |
| Vista (Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| VTA-1 | 3,192 | 2,864 | 2,909 | 0.0\% | 2,909 | 2,909 | 2,909 | 2,909 | 2,909 | Summer |
| VTA-2 | 3,047 | 3,095 | 2,813 | 0.0\% | 3,095 | 3,095 | 3,095 | 3,095 | 3,095 | Winter |
| VTA-3 | 1,512 | 1,399 | 1,348 | 0.0\% | 1,399 | 1,399 | 1,399 | 1,399 | 1,399 | Winter |
| VTA-4 | 4,239 | 5,126 | 5,872 | 0.0\% | 5,126 | 5,126 | 5,126 | 5,126 | 5,126 | Summer |
| Bay 1 | 11,990 | 12,483 | 12,942 | 0.0\% | 12,528 | 12,528 | 12,528 | 12,528 | 12,528 | Summer |
| VTA-5 | 5,063 | 5,051 | 5,010 | 0.0\% | 5,051 | 5,051 | 5,051 | 5,051 | 5,051 | Winter |
| VTA-6 | 2,192 | 1,287 | 2,149 | 0.0\% | 2,149 | 2,149 | 2,149 | 2,149 | 2,149 | Summer |
| VTA-7 | 7,064 | 6,100 | 6,119 | 0.0\% | 6,100 | 6,100 | 6,100 | 6,100 | 6,100 | Summer |
| VTA-8 | 5,697 | 5,594 | 3,771 | 0.0\% | 6,630 | 6,630 | 6,630 | 6,630 | 6,630 | Winter |
| Bay 2 | 20,017 | 18,033 | 17,049 | 0.0\% | 19,931 | 19,931 | 19,931 | 19,931 | 19,931 | Winter |
| Note: Feeder VIS-8 partially off-loaded to ORV-2 during 2021 peak for load balancing. |  |  |  |  |  |  |  |  |  |  |
| Zephyr Heights (Kennewick P.O.D.) |  |  |  |  |  |  |  |  |  |  |
| ZEH-1 | 2,375 | 2,306 | 2,450 | 3.6\% | 2,494 | 2,551 | 2,607 | 2,663 | 2,719 | Winter |
| ZEH-2 | 4,330 | 4,664 | 5,277 | 1.6\% | 4,684 | 4,709 | 4,734 | 4,759 | 4,784 | Winter |
| ZEH-3 | 359 | 387 | 712 | 0.0\% | 712 | 712 | 712 | 712 | 712 | Summer |
| Bay 1 | 7,064 | 7,357 | 8,439 | 5.2\% | 7,890 | 7,971 | 8,053 | 8,134 | 8,215 | Winter |
| Continguous P.O.D. Totals (PUD Only) |  |  |  |  |  |  |  |  |  |  |
| Benton City | 21,659 | 21,515 | 20,799 | 2.7\% | 22,104 | 18,761 | 18,804 | 18,847 | 18,889 | Winter |
| Hedges | 22,423 | 21,462 | 21,217 | 7.2\% | 22,149 | 22,261 | 22,374 | 22,487 | 22,599 | Winter |
| Kennewick | 219,683 | 212,921 | 221,305 | 48.2\% | 222,548 | 218,194 | 218,953 | 219,712 | 220,471 | Winter |
| Prosser | 31,801 | 29,527 | 27,781 | 1.4\% | 29,246 | 29,268 | 29,290 | 29,312 | 29,334 | Winter |
| Total | 295,566 | 285,425 | 291,102 | 59.4\% | 296,046 | 288,484 | 289,421 | 290,357 | 291,293 | Winter |
| Miscellaneous Substations \& P.O.D.'s |  |  |  |  |  |  |  |  |  |  |
| 251 (DOE) | 58 | 70 | 75 | 0.0\% | 87 | 87 | 87 | 87 | 87 |  |
| 451B (Ligo) | 1,025 | 978 | 2,023 | 0.0\% | 1,265 | 1,265 | 1,265 | 1,265 | 1,265 |  |
| Chevron | 7,150 | 6,875 | 7,045 | 0.0\% | 8,210 | 8,210 | 8,210 | 8,210 | 8,210 |  |
| Cold Creek | 2,910 | 2,156 | 3,568 | 0.0\% | 3,168 | 3,168 | 3,168 | 3,168 | 3,168 |  |
| Phillips \#1,2,3 | 1,060 | 910 | 799 | 0.0\% | 1,120 | 1,120 | 1,120 | 1,120 | 1,120 |  |
| Total | 12,203 | 10,989 | 13,510 | 0.0\% | 13,850 | 13,850 | 13,850 | 13,850 | 13,850 |  |


| Table B3 <br> Feeder Metered Peak Amps |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Feeder Id | AØ Amps | B $\varnothing$ Amps | C $\varnothing$ Amps | Avg. Amps | $\begin{array}{\|c\|} \hline \text { AØ } \\ \text { Calc. } \\ \text { kVA } \end{array}$ |  | $\begin{gathered} \text { C } \varnothing \\ \text { Calc. } \\ \text { kVA } \end{gathered}$ | Total Calc. kVA | Total Meas. kVA | Calc to Meas kVA \% diff | Unbalance Amps |
| ANG-9 | 183 | 222 | 181 | 195 | 1362 | 1652 | 1347 | 4359 | 4379 | 0\% | 40 |
| ANG-1 | 158 | 217 | 82 | 152 | 1176 | 1614 | 610 | 3400 | 3400 | 0\% | 117 |
| ANG-2 | 295 | 201 | 192 | 229 | 2195 | 1495 | 1428 | 5118 | 5128 | 0\% | 99 |
| ANG-3 | 228 | 207 | 222 | 219 | 1696 | 1540 | 1652 | 4888 | 4805 | 2\% | 19 |
| ANG-4 | 158 | 179 | 141 | 159 | 1176 | 1332 | 1049 | 3556 | 3445 | 3\% | 33 |
| ANG-5 | 263 | 221 | 268 | 251 | 1957 | 1644 | 1994 | 5594 | 5623 | -1\% | 45 |
| ANG-6 | 148 | 197 | 180 | 175 | 1101 | 1466 | 1339 | 3906 | 3926 | -1\% | 43 |
| ANG-7 | 180 | 184 | 148 | 171 | 1339 | 1369 | 1101 | 3809 | 3791 | 0\% | 34 |
| ANG-8 | 170 | 221 | 220 | 204 | 1265 | 1644 | 1637 | 4545 | 4624 | -2\% | 51 |
| BEC-1 | 266 | 278 | 267 | 270 | 1979 | 2068 | 1986 | 6033 | 6105 | -1\% | 12 |
| BEC-2 | 238 | 200 | 228 | 222 | 1771 | 1488 | 1696 | 4955 | 4979 | 0\% | 34 |
| CCR-1 | 21 | 9 | 9 | 13 | 156 | 67 | 67 | 290 | 330 | -14\% | 12 |
| ELY-1 | 241 | 182 | 180 | 201 | 1793 | 1354 | 1339 | 4486 | 4471 | 0\% | 60 |
| ELY-2 | 117 | 103 | 120 | 113 | 870 | 766 | 893 | 2529 | 2525 | 0\% | 16 |
| ELY-3 | 283 | 284 | 220 | 262 | 2106 | 2113 | 1637 | 5855 | 5855 | 0\% | 64 |
| ELY-4 | 208 | 279 | 181 | 223 | 1548 | 2076 | 1347 | 4969 | 4966 | 0\% | 88 |
| ELY-5 | 136 | 173 | 121 | 143 | 1012 | 1287 | 900 | 3199 | 3276 | -2\% | 46 |
| ELY-6 | 257 | 294 | 281 | 277 | 1912 | 2187 | 2091 | 6190 | 6179 | 0\% | 33 |
| ELY-7 | 185 | 178 | 216 | 193 | 1376 | 1324 | 1607 | 4307 | 4311 | 0\% | 35 |
| ELY-8 | 241 | 118 | 169 | 176 | 1793 | 878 | 1257 | 3928 | 3989 | -2\% | 107 |
| GUM-1 | 262 | 228 | 262 | 251 | 1949 | 1696 | 1949 | 5594 | 5571 | 0\% | 34 |
| GUM-2 | 192 | 151 | 188 | 177 | 1428 | 1123 | 1399 | 3950 | 4102 | -4\% | 39 |
| GUM-3 | 171 | 237 | 281 | 245 | 1272 | 1763 | 2091 | 5468 | 5626 | -3\% | 96 |
| GUM-4 | 317 | 224 | 253 | 265 | 2358 | 1667 | 1882 | 5907 | 5922 | 0\% | 82 |
| HEG-1 | 81 | 93 | 14 | 63 | 603 | 692 | 104 | 1399 | 1407 | -1\% | 74 |
| HEG-2 | 221 | 240 | 296 | 252 | 1644 | 1786 | 2202 | 5632 | 5662 | -1\% | 68 |
| HEG-3 | 243 | 160 | 176 | 193 | 1808 | 1190 | 1309 | 4307 | 4422 | -3\% | 76 |
| HEG-4 | 227 | 307 | 293 | 276 | 1689 | 2284 | 2180 | 6152 | 6585 | -7\% | 74 |
| HLS-1 | 238 | 177 | 172 | 196 | 1771 | 1317 | 1280 | 4367 | 4205 | 4\% | 64 |
| HLS-2 | 166 | 139 | 143 | 149 | 1235 | 1034 | 1064 | 3333 | 3324 | 0\% | 25 |
| HLS-3 | 282 | 254 | 251 | 262 | 2098 | 1890 | 1867 | 5855 | 5726 | 2\% | 30 |
| HLS-4 | 191 | 265 | 174 | 210 | 1421 | 1972 | 1295 | 4687 | 4667 | 0\% | 84 |
| HLS-5 | 202 | 161 | 129 | 164 | 1503 | 1198 | 960 | 3660 | 3610 | 1\% | 63 |
| HLS-6 | 216 | 166 | 191 | 191 | 1607 | 1235 | 1421 | 4263 | 4282 | 0\% | 43 |
| HLS-7 | 199 | 220 | 261 | 227 | 1481 | 1637 | 1942 | 5059 | 5069 | 0\% | 55 |
| HLS-8 | 187 | 182 | 238 | 202 | 1391 | 1354 | 1771 | 4516 | 4542 | -1\% | 54 |
| HLS-9 | 266 | 208 | 234 | 236 | 1979 | 1548 | 1741 | 5267 | 5284 | 0\% | 50 |
| KEN-1 | 250 | 244 | 273 | 256 | 1860 | 1815 | 2031 | 5706 | 5636 | 1\% | 27 |
| KEN-2 | 201 | 208 | 211 | 207 | 1495 | 1548 | 1570 | 4612 | 5012 | -9\% | 9 |
| KEN-3 | 257 | 243 | 274 | 258 | 1912 | 1808 | 2039 | 5758 | 5795 | -1\% | 27 |
| KEN-4 | 221 | 255 | 190 | 222 | 1644 | 1897 | 1414 | 4955 | 5023 | -1\% | 56 |
| KEN-5 | 193 | 256 | 254 | 234 | 1436 | 1905 | 1890 | 5230 | 5346 | -2\% | 62 |
| KEN-6 | 216 | 243 | 195 | 218 | 1607 | 1808 | 1451 | 4865 | 4906 | -1\% | 42 |
| KEN-7 | 186 | 186 | 201 | 191 | 1384 | 1384 | 1495 | 4263 | 4370 | -3\% | 15 |
| KEN-8 | 331 | 315 | 295 | 314 | 2463 | 2344 | 2195 | 7000 | 6773 | 3\% | 31 |
| KEN-9 | 150 | 141 | 186 | 159 | 1116 | 1049 | 1384 | 3549 | 3684 | -4\% | 41 |
| LES-1 | 247 | 293 | 270 | 270 | 1838 | 2180 | 2009 | 6026 | 6013 | 0\% | 40 |
| LES-2 | 86 | 137 | 122 | 115 | 640 | 1019 | 908 | 2567 | 2549 | 1\% | 45 |
| LES-3 | 149 | 71 | 190 | 137 | 1109 | 528 | 1414 | 3050 | 3055 | 0\% | 105 |
| LES-4 | 0 | 78 | 57 | 45 | 0 | 580 | 424 | 1004 | 1030 | -3\% | 70 |
| ORV-2 | 155 | 156 | 146 | 152 | 1153 | 1161 | 1086 | 3400 | 3379 | 1\% | 10 |
| ORV-3 | 264 | 221 | 277 | 254 | 1964 | 1644 | 2061 | 5669 | 5673 | 0\% | 51 |
| ORV-4 | 111 | 112 | 125 | 116 | 826 | 833 | 930 | 2589 | 2562 | 1\% | 14 |
| ORV-5 | 227 | 237 | 219 | 228 | 1689 | 1763 | 1629 | 5081 | 5025 | 1\% | 16 |
| ORV-6 | 186 | 154 | 229 | 190 | 1384 | 1146 | 1704 | 4233 | 4285 | -1\% | 65 |
| PHL-6 | 4 | 7 | 6 | 6 | 30 | 52 | 45 | 126 | 169 | -34\% | 3 |
| PHL-7 | 180 | 173 | 160 | 171 | 1339 | 1287 | 1190 | 3816 | 3831 | 0\% | 18 |
| PSR-1 | 152 | 167 | 149 | 156 | 1131 | 1242 | 1109 | 3482 | 3513 | -1\% | 17 |
| PSR-2 | 149 | 130 | 138 | 139 | 1109 | 967 | 1027 | 3102 | 3092 | 0\% | 17 |
| PSR-3 | 226 | 258 | 202 | 229 | 1681 | 1920 | 1503 | 5103 | 5108 | 0\% | 49 |
| PSR-4 | 245 | 157 | 223 | 208 | 1823 | 1168 | 1659 | 4650 | 4561 | 2\% | 79 |
| PSR-5 | 47 | 54 | 35 | 45 | 350 | 402 | 260 | 1012 | 1035 | -2\% | 17 |
| PSR-6 | 220 | 200 | 218 | 213 | 1637 | 1488 | 1622 | 4746 | 4699 | 1\% | 19 |
| RTA-1 | 225 | 216 | 202 | 214 | 1674 | 1607 | 1503 | 4783 | 4781 | 0\% | 20 |
| RTA-2 | 441 | 365 | 425 | 410 | 3281 | 2716 | 3162 | 9158 | 9160 | 0\% | 69 |
| RTA-3 | 272 | 124 | 158 | 185 | 2024 | 923 | 1176 | 4121 | 4112 | 0\% | 134 |
| RTA-4 | 159 | 157 | 160 | 159 | 1183 | 1168 | 1190 | 3541 | 3534 | 0\% | 3 |
| RVF-1 | 263 | 158 | 187 | 203 | 1957 | 1176 | 1391 | 4523 | 4572 | -1\% | 94 |
| RVF-2 | 28 | 14 | 14 | 19 | 208 | 104 | 104 | 417 | 538 | -29\% | 14 |
| RVF-3 | 205 | 195 | 188 | 196 | 1525 | 1451 | 1399 | 4374 | 4326 | 1\% | 15 |
| SSR-1 | 224 | 128 | 144 | 165 | 1667 | 952 | 1071 | 3690 | 3682 | 0\% | 89 |
| SSR-2 | 179 | 211 | 157 | 182 | 1332 | 1570 | 1168 | 4069 | 3961 | 3\% | 47 |
| SSR-3 | 73 | 67 | 70 | 70 | 543 | 498 | 521 | 1562 | 1467 | 6\% | 5 |
| SSR-4 | 124 | 158 | 240 | 174 | 923 | 1176 | 1786 | 3883 | 3825 | 2\% | 103 |
| VTA-1 | 87 | 86 | 81 | 85 | 647 | 640 | 603 | 1890 | 1896 | 0\% | 6 |
| VTA-2 | 152 | 178 | 124 | 151 | 1131 | 1324 | 923 | 3377 | 3329 | 1\% | 47 |
| VTA-3 | 87 | 117 | 97 | 100 | 647 | 870 | 722 | 2239 | 2236 | 0\% | 26 |
| VTA-4 | 196 | 203 | 240 | 213 | 1458 | 1510 | 1786 | 4754 | 4734 | 0\% | 41 |
| VTA-5 | 237 | 246 | 202 | 228 | 1763 | 1830 | 1503 | 5096 | 5128 | -1\% | 40 |
| VTA-6 | 78 | 72 | 66 | 72 | 580 | 536 | 491 | 1607 | 1606 | 0\% | 10 |
| VTA-7 | 209 | 200 | 196 | 202 | 1555 | 1488 | 1458 | 4501 | 4469 | 1\% | 12 |
| VTA-8 | 287 | 237 | 266 | 263 | 2135 | 1763 | 1979 | 5877 | 5894 | 0\% | 43 |
| ZEH-1 | 146 | 120 | 188 | 151 | 1086 | 893 | 1399 | 3377 | 3345 | 1\% | 59 |
| ZEH-2 | 238 | 200 | 202 | 213 | 1771 | 1488 | 1503 | 4761 | 4716 | 1\% | 37 |
| ZEH-3 | 35 | 10 | 10 | 18 | 260 | 74 | 74 | 409 | 400 | 2\% | 25 |


| Table B4 <br> Feeder Metered Peak Amps Winter - 2020-2021 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Feeder Id | AØ Amps | B $\varnothing$ Amps | СØ Amps | Avg. Amps |  |  |  | Total Calc. kVA | Total Meas. kVA | Calc to Meas kVA \% diff | Unbalance Amps |
| ANG-9 | 185 | 197 | 179 | 187 | 1376 | 1466 | 1332 | 4173 | 4111 | 1\% | 16 |
| ANG-1 | 146 | 195 | 83 | 141 | 1086 | 1451 | 618 | 3154 | 3127 | 1\% | 97 |
| ANG-2 | 245 | 189 | 174 | 203 | 1823 | 1406 | 1295 | 4523 | 4419 | 2\% | 65 |
| ANG-3 | 220 | 204 | 207 | 210 | 1637 | 1518 | 1540 | 4694 | 4674 | 0\% | 15 |
| ANG-4 | 157 | 195 | 148 | 167 | 1168 | 1451 | 1101 | 3720 | 3601 | 3\% | 43 |
| ANG-5 | 222 | 196 | 231 | 216 | 1652 | 1458 | 1719 | 4828 | 4824 | 0\% | 31 |
| ANG-6 | 155 | 197 | 170 | 174 | 1153 | 1466 | 1265 | 3883 | 3861 | 1\% | 37 |
| ANG-7 | 159 | 167 | 131 | 152 | 1183 | 1242 | 975 | 3400 | 3372 | 1\% | 33 |
| ANG-8 | 144 | 215 | 213 | 191 | 1071 | 1600 | 1585 | 4255 | 4171 | 2\% | 70 |
| BEC-1 | 242 | 222 | 242 | 235 | 1800 | 1652 | 1800 | 5252 | 5228 | 0\% | 20 |
| BEC-2 | 225 | 149 | 173 | 182 | 1674 | 1109 | 1287 | 4069 | 4165 | -2\% | 67 |
| CCR-1 | 22 | 9 | 6 | 12 | 164 | 67 | 45 | 275 | 276 | 0\% | 15 |
| ELY-1 | 199 | 153 | 139 | 164 | 1481 | 1138 | 1034 | 3653 | 3660 | 0\% | 54 |
| ELY-2 | 96 | 83 | 101 | 93 | 714 | 618 | 751 | 2083 | 2158 | -4\% | 16 |
| ELY-3 | 251 | 282 | 186 | 240 | 1867 | 2098 | 1384 | 5349 | 5318 | 1\% | 85 |
| ELY-4 | 155 | 237 | 159 | 184 | 1153 | 1763 | 1183 | 4099 | 4074 | 1\% | 80 |
| ELY-5 | 107 | 170 | 93 | 123 | 796 | 1265 | 692 | 2753 | 2758 | 0\% | 71 |
| ELY-6 | 216 | 240 | 229 | 228 | 1607 | 1786 | 1704 | 5096 | 5233 | -3\% | 21 |
| ELY-7 | 133 | 152 | 195 | 160 | 990 | 1131 | 1451 | 3571 | 3686 | -3\% | 55 |
| ELY-8 | 201 | 116 | 149 | 155 | 1495 | 863 | 1109 | 3467 | 3516 | -1\% | 74 |
| GUM-1 | 267 | 290 | 223 | 260 | 1986 | 2158 | 1659 | 5803 | 5784 | 0\% | 59 |
| GUM-2 | 159 | 119 | 134 | 137 | 1183 | 885 | 997 | 3065 | 3011 | 2\% | 35 |
| GUM-3 | 171 | 182 | 219 | 191 | 1272 | 1354 | 1629 | 4255 | 4245 | 0\% | 44 |
| GUM-4 | 305 | 203 | 261 | 256 | 2269 | 1510 | 1942 | 5721 | 5647 | 1\% | 89 |
| HEG-1 | 75 | 91 | 18 | 61 | 558 | 677 | 134 | 1369 | 1364 | 0\% | 66 |
| HEG-2 | 191 | 219 | 250 | 220 | 1421 | 1629 | 1860 | 4910 | 4960 | -1\% | 51 |
| HEG-3 | 215 | 161 | 153 | 176 | 1600 | 1198 | 1138 | 3935 | 3960 | -1\% | 58 |
| HEG-4 | 239 | 241 | 225 | 235 | 1778 | 1793 | 1674 | 5245 | 5318 | -1\% | 15 |
| HLS-1 | 199 | 156 | 159 | 171 | 1481 | 1161 | 1183 | 3824 | 3534 | 8\% | 42 |
| HLS-2 | 149 | 114 | 140 | 134 | 1109 | 848 | 1042 | 2998 | 2999 | 0\% | 31 |
| HLS-3 | 256 | 240 | 229 | 242 | 1905 | 1786 | 1704 | 5394 | 5292 | 2\% | 24 |
| HLS-4 | 145 | 230 | 164 | 180 | 1079 | 1711 | 1220 | 4010 | 3986 | 1\% | 77 |
| HLS-5 | 170 | 121 | 115 | 135 | 1265 | 900 | 856 | 3020 | 3000 | 1\% | 52 |
| HLS-6 | 197 | 141 | 166 | 168 | 1466 | 1049 | 1235 | 3749 | 3750 | 0\% | 49 |
| HLS-7 | 193 | 200 | 236 | 210 | 1436 | 1488 | 1756 | 4679 | 4694 | 0\% | 40 |
| HLS-8 | 159 | 155 | 208 | 174 | 1183 | 1153 | 1548 | 3883 | 3903 | -1\% | 51 |
| HLS-9 | 213 | 170 | 198 | 194 | 1585 | 1265 | 1473 | 4322 | 4302 | 0\% | 38 |
| KEN-1 | 157 | 159 | 206 | 174 | 1168 | 1183 | 1533 | 3883 | 3881 | 0\% | 48 |
| KEN-2 | 177 | 193 | 213 | 194 | 1317 | 1436 | 1585 | 4337 | 4350 | 0\% | 31 |
| KEN-3 | 230 | 215 | 274 | 240 | 1711 | 1600 | 2039 | 5349 | 5362 | 0\% | 53 |
| KEN-4 | 216 | 263 | 198 | 226 | 1607 | 1957 | 1473 | 5036 | 5016 | 0\% | 58 |
| KEN-5 | 166 | 184 | 225 | 192 | 1235 | 1369 | 1674 | 4278 | 4272 | 0\% | 52 |
| KEN-6 | 228 | 229 | 202 | 220 | 1696 | 1704 | 1503 | 4903 | 4910 | 0\% | 27 |
| KEN-7 | 179 | 171 | 201 | 184 | 1332 | 1272 | 1495 | 4099 | 4044 | 1\% | 27 |
| KEN-8 | 314 | 302 | 267 | 294 | 2336 | 2247 | 1986 | 6569 | 6553 | 0\% | 42 |
| KEN-9 | 142 | 112 | 140 | 131 | 1056 | 833 | 1042 | 2931 | 2890 | 1\% | 29 |
| LES-1 | 196 | 198 | 206 | 200 | 1458 | 1473 | 1533 | 4464 | 4448 | 0\% | 9 |
| LES-2 | 101 | 115 | 135 | 117 | 751 | 856 | 1004 | 2611 | 2620 | 0\% | 30 |
| LES-3 | 114 | 61 | 178 | 118 | 848 | 454 | 1324 | 2626 | 2568 | 2\% | 101 |
| LES-4 | 29 | 103 | 67 | 66 | 216 | 766 | 498 | 1480 | 1467 | 1\% | 64 |
| ORV-2 | 208 | 172 | 204 | 195 | 1548 | 1280 | 1518 | 4345 | 4374 | -1\% | 34 |
| ORV-3 | 188 | 194 | 186 | 189 | 1399 | 1443 | 1384 | 4226 | 4516 | -7\% | 7 |
| ORV-4 | 120 | 113 | 109 | 114 | 893 | 841 | 811 | 2544 | 2487 | 2\% | 10 |
| ORV-5 | 188 | 201 | 172 | 187 | 1399 | 1495 | 1280 | 4173 | 4242 | -2\% | 25 |
| ORV-6 | 170 | 130 | 199 | 166 | 1265 | 967 | 1481 | 3712 | 3787 | -2\% | 60 |
| PHL-6 | 4 | 7 | 6 | 6 | 30 | 52 | 45 | 126 | 169 | -34\% | 3 |
| PHL-7 | 299 | 186 | 167 | 171 | 2225 | 1384 | 1242 | 3816 | 3983 | -4\% | 124 |
| PSR-1 | 163 | 175 | 154 | 164 | 1213 | 1302 | 1146 | 3660 | 3598 | 2\% | 18 |
| PSR-2 | 131 | 122 | 150 | 134 | 975 | 908 | 1116 | 2998 | 2926 | 2\% | 25 |
| PSR-3 | 213 | 238 | 204 | 218 | 1585 | 1771 | 1518 | 4873 | 4826 | 1\% | 31 |
| PSR-4 | 224 | 159 | 208 | 197 | 1667 | 1183 | 1548 | 4397 | 4355 | 1\% | 59 |
| PSR-5 | 46 | 56 | 39 | 47 | 342 | 417 | 290 | 1049 | 1045 | 0\% | 15 |
| PSR-6 | 209 | 165 | 193 | 189 | 1555 | 1228 | 1436 | 4218 | 4181 | 1\% | 39 |
| RTA-1 | 177 | 166 | 161 | 168 | 1317 | 1235 | 1198 | 3749 | 3720 | 1\% | 14 |
| RTA-2 | 347 | 301 | 349 | 332 | 2582 | 2239 | 2597 | 7417 | 7376 | 1\% | 47 |
| RTA-3 | 144 | 173 | 107 | 141 | 1071 | 1287 | 796 | 3154 | 3056 | 3\% | 57 |
| RTA-4 | 163 | 138 | 178 | 160 | 1213 | 1027 | 1324 | 3563 | 3434 | 4\% | 35 |
| RVF-1 | 234 | 163 | 176 | 191 | 1741 | 1213 | 1309 | 4263 | 4320 | -1\% | 65 |
| RVF-2 | 29 | 29 | 10 | 9 | 216 | 216 | 74 | 201 | 500 | -149\% | 19 |
| RVF-3 | 191 | 189 | 215 | 171 | 1421 | 1406 | 1600 | 3816 | 4166 | -9\% | 25 |
| SSR-1 | 165 | 202 | 110 | 126 | 1228 | 1503 | 818 | 2812 | 3241 | -15\% | 80 |
| SSR-2 | 153 | 135 | 160 | 120 | 1138 | 1004 | 1190 | 2678 | 3215 | -20\% | 22 |
| SSR-3 | 77 | 104 | 105 | 106 | 573 | 774 | 781 | 2366 | 2376 | 0\% | 28 |
| SSR-4 | 81 | 98 | 101 | 97 | 603 | 729 | 751 | 2165 | 2314 | -7\% | 19 |
| VTA-1 | 81 | 73 | 76 | 72 | 603 | 543 | 565 | 1607 | 1778 | -11\% | 7 |
| VTA-2 | 164 | 156 | 159 | 97 | 1220 | 1161 | 1183 | 2165 | 3007 | -39\% | 7 |
| VTA-3 | 102 | 91 | 80 | 85 | 759 | 677 | 595 | 1897 | 1915 | -1\% | 19 |
| VTA-4 | 209 | 214 | 189 | 225 | 1555 | 1592 | 1406 | 5022 | 4567 | 9\% | 23 |
| VTA-5 | 209 | 191 | 222 | 180 | 1555 | 1421 | 1652 | 4017 | 4474 | -11\% | 27 |
| VTA-6 | 66 | 56 | 62 | 59 | 491 | 417 | 461 | 1317 | 1315 | 0\% | 9 |
| VTA-7 | 192 | 180 | 163 | 160 | 1428 | 1339 | 1213 | 3571 | 3687 | -3\% | 25 |
| VTA-8 | 265 | 242 | 224 | 230 | 1972 | 1800 | 1667 | 5133 | 5254 | -2\% | 36 |
| ZEH-1 | 134 | 115 | 103 | 145 | 997 | 856 | 766 | 3236 | 2673 | 17\% | 27 |
| ZEH-2 | 197 | 188 | 179 | 183 | 1466 | 1399 | 1332 | 4084 | 4032 | 1\% | 16 |
| ZEH-3 | 32 | 36 | 24 | 29 | 238 | 268 | 179 | 647 | 400 | 38\% | - 11 |


| Table B5Feeder Metered Peak Amps |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | AØ | Bø | CØ | Total | Total | Calc to |  |
| Feeder | Aø | Bø | Cø | Avg. | Calc. | Calc. | Calc. | Calc. | Meas. | Meas kVA | Unbalance |
| Id | Amps | Amps | Amps | Amps | kVA | kVA | kVA | kVA | kVA | \% diff | Amps |
| ANG-9 | 272 | 343 | 327 | 314 | 2024 | 2552 | 2433 | 7008 | 6883 | 2\% | 65 |
| ANG-1 | 122 | 166 | 78 | 122 | 908 | 1235 | 580 | 2723 | 2687 | 1\% | 76 |
| ANG-2 | 213 | 169 | 160 | 181 | 1585 | 1257 | 1190 | 4032 | 3972 | 1\% | 49 |
| ANG-3 | 231 | 178 | 188 | 199 | 1719 | 1324 | 1399 | 4441 | 4369 | 2\% | 49 |
| ANG-4 | 108 | 127 | 105 | 113 | 804 | 945 | 781 | 2529 | 1680 | 34\% | 21 |
| ANG-5 | 259 | 288 | 283 | 277 | 1927 | 2143 | 2106 | 6175 | 6091 | 1\% | 27 |
| ANG-6 | 158 | 198 | 181 | 179 | 1176 | 1473 | 1347 | 3995 | 3952 | 1\% | 35 |
| ANG-7 | 225 | 244 | 216 | 228 | 1674 | 1815 | 1607 | 5096 | 5084 | 0\% | 25 |
| ANG-8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | \#DIV/0! | 0 |
| BEC-1 | 169 | 171 | 162 | 167 | 1257 | 1272 | 1205 | 3735 | 3783 | -1\% | 8 |
| BEC-2 | 166 | 109 | 142 | 139 | 1235 | 811 | 1056 | 3102 | 3092 | 0\% | 50 |
| BEC-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | \#DIV/0! | 0 |
| BEC-4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | \#DIV/0! | 0 |
| CCR-1 | 202 | 196 | 198 | 199 | 1503 | 1458 | 1473 | 4434 | 4232 | 5\% | 5 |
| ELY-1 | 155 | 116 | 106 | 126 | 1153 | 863 | 789 | 2805 | 2865 | -2\% | 45 |
| ELY-2 | 86 | 86 | 78 | 83 | 640 | 640 | 580 | 1860 | 1871 | -1\% | 8 |
| ELY-3 | 332 | 342 | 260 | 311 | 2470 | 2544 | 1934 | 6948 | 6995 | -1\% | 77 |
| ELY-4 | 200 | 258 | 188 | 215 | 1488 | 1920 | 1399 | 4806 | 4823 | 0\% | 65 |
| ELY-5 | 183 | 223 | 171 | 192 | 1362 | 1659 | 1272 | 4292 | 4229 | 1\% | 47 |
| ELY-6 | 218 | 200 | 245 | 221 | 1622 | 1488 | 1823 | 4932 | 4890 | 1\% | 39 |
| ELY-7 | 214 | 257 | 248 | 240 | 1592 | 1912 | 1845 | 5349 | 5177 | 3\% | 39 |
| ELY-8 | 167 | 120 | 155 | 147 | 1242 | 893 | 1153 | 3288 | 3492 | -6\% | 42 |
| GUM-1 | 161 | 149 | 149 | 153 | 1198 | 1109 | 1109 | 3415 | 3408 | 0\% | 12 |
| GUM-2 | 136 | 104 | 114 | 118 | 1012 | 774 | 848 | 2634 | 2597 | 1\% | 28 |
| GUM-3 | 146 | 150 | 160 | 152 | 1086 | 1116 | 1190 | 3392 | 3344 | 1\% | 12 |
| GUM-4 | 250 | 210 | 216 | 225 | 1860 | 1562 | 1607 | 5029 | 5095 | -1\% | 37 |
| HEG-1 | 43 | 65 | 11 | 40 | 320 | 484 | 82 | 885 | 876 | 1\% | 47 |
| HEG-2 | 231 | 237 | 250 | 239 | 1719 | 1763 | 1860 | 5341 | 5405 | -1\% | 17 |
| HEG-3 | 162 | 110 | 116 | 129 | 1205 | 818 | 863 | 2886 | 3869 | -34\% | 49 |
| HEG-4 | 205 | 215 | 187 | 202 | 1525 | 1600 | 1391 | 4516 | 4468 | 1\% | 25 |
| HLS-1 | 173 | 126 | 116 | 138 | 1287 | 937 | 863 | 3087 | 3040 | 2\% | 53 |
| HLS-2 | 313 | 253 | 268 | 278 | 2329 | 1882 | 1994 | 6204 | 5969 | 4\% | 54 |
| HLS-3 | 295 | 271 | 267 | 278 | 2195 | 2016 | 1986 | 6197 | 6111 | 1\% | 26 |
| HLS-4 | 141 | 206 | 130 | 159 | 1049 | 1533 | 967 | 3549 | 3542 | 0\% | 71 |
| HLS-5 | 327 | 264 | 253 | 281 | 2433 | 1964 | 1882 | 6279 | 6003 | 4\% | 69 |
| HLS-6 | 196 | 166 | 165 | 176 | 1458 | 1235 | 1228 | 3921 | 3789 | 3\% | 31 |
| HLS-7 | 173 | 173 | 197 | 181 | 1287 | 1287 | 1466 | 4040 | 4064 | -1\% | 24 |
| HLS-8 | 137 | 125 | 166 | 143 | 1019 | 930 | 1235 | 3184 | 3185 | 0\% | 37 |
| HLS-9 | 233 | 274 | 174 | 227 | 1734 | 2039 | 1295 | 5066 | 4961 | 2\% | 87 |
| KEN-1 | 212 | 221 | 242 | 225 | 1577 | 1644 | 1800 | 5022 | 5244 | -4\% | 27 |
| KEN-2 | 142 | 156 | 175 | 158 | 1056 | 1161 | 1302 | 3519 | 3442 | 2\% | 29 |
| KEN-3 | 222 | 217 | 254 | 231 | 1652 | 1614 | 1890 | 5155 | 5075 | 2\% | 35 |
| KEN-4 | 191 | 238 | 177 | 202 | 1421 | 1771 | 1317 | 4508 | 4490 | 0\% | 55 |
| KEN-5 | 131 | 166 | 174 | 157 | 975 | 1235 | 1295 | 3504 | 3436 | 2\% | 40 |
| KEN-6 | 337 | 331 | 289 | 319 | 2507 | 2463 | 2150 | 7119 | 6925 | 3\% | 45 |
| KEN-7 | 229 | 199 | 241 | 223 | 1704 | 1481 | 1793 | 4977 | 4932 | 1\% | 37 |
| KEN-8 | 270 | 257 | 231 | 253 | 2009 | 1912 | 1719 | 5639 | 5674 | -1\% | 34 |
| KEN-9 | 167 | 153 | 172 | 164 | 1242 | 1138 | 1280 | 3660 | 3632 | 1\% | 17 |
| LES-1 | 160 | 165 | 179 | 168 | 1190 | 1228 | 1332 | 3749 | 3738 | 0\% | 17 |
| LES-2 | 157 | 223 | 174 | 185 | 1168 | 1659 | 1295 | 4121 | 4111 | 0\% | 59 |
| LES-3 | 79 | 43 | 102 | 75 | 588 | 320 | 759 | 1666 | 1644 | 1\% | 52 |
| LES-4 | 59 | 117 | 77 | 84 | 439 | 870 | 573 | 1882 | 1857 | 1\% | 51 |
| ORV-2 | 250 | 295 | 303 | 283 | 1860 | 2195 | 2254 | 6309 | 6290 | 0\% | 49 |
| ORV-3 | 211 | 188 | 219 | 206 | 1570 | 1399 | 1629 | 4598 | 4534 | 1\% | 28 |
| ORV-4 | 195 | 206 | 183 | 195 | 1451 | 1533 | 1362 | 4345 | 4284 | 1\% | 20 |
| ORV-5 | 196 | 206 | 192 | 198 | 1458 | 1533 | 1428 | 4419 | 4472 | -1\% | 12 |
| ORV-6 | 263 | 254 | 267 | 261 | 1957 | 1890 | 1986 | 5832 | 5735 | 2\% | 12 |
| PHL-6 | 254 | 264 | 254 | 257 | 1890 | 1964 | 1890 | 5743 | 5557 | 3\% | 10 |
| PHL-7 | 173 | 166 | 157 | 165 | 1287 | 1235 | 1168 | 3690 | 3719 | -1\% | 14 |
| PSR-1 | 191 | 204 | 190 | 195 | 1421 | 1518 | 1414 | 4352 | 4299 | 1\% | 14 |
| PSR-2 | 127 | 106 | 130 | 121 | 945 | 789 | 967 | 2700 | 2803 | -4\% | 23 |
| PSR-3 | 267 | 255 | 238 | 253 | 1986 | 1897 | 1771 | 5654 | 5501 | 3\% | 25 |
| PSR-4 | 265 | 207 | 269 | 247 | 1972 | 1540 | 2001 | 5513 | 5298 | 4\% | 60 |
| PSR-5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | \#DIV/0! | 0 |
| PSR-6 | 190 | 168 | 175 | 178 | 1414 | 1250 | 1302 | 3965 | 3873 | 2\% | 19 |
| RTA-1 | 128 | 126 | 122 | 125 | 952 | 937 | 908 | 2797 | 2735 | 2\% | 5 |
| RTA-2 | 295 | 264 | 303 | 287 | 2195 | 1964 | 2254 | 6413 | 6222 | 3\% | 36 |
| RTA-3 | 103 | 149 | 75 | 109 | 766 | 1109 | 558 | 2433 | 2375 | 2\% | 65 |
| RTA-4 | 106 | 90 | 109 | 102 | 789 | 670 | 811 | 2269 | 2274 | 0\% | - 18 |
| RVF-1 | 216 | 223 | 161 | 175 | 1607 | 1659 | 1198 | 3906 | 4161 | -7\% | 59 |
| RVF-2 | 29 | 25 | 13 | 22 | 216 | 186 | 97 | 498 | 475 | 5\% | 14 |
| RVF-3 | 166 | 162 | 157 | 162 | 1235 | 1205 | 1168 | 3608 | 3755 | -4\% | 8 |
| SSR-1 | 232 | 166 | 188 | 195 | 1726 | 1235 | 1399 | 4359 | 4250 | 3\% | 58 |
| SSR-2 | 129 | 146 | 120 | 132 | 960 | 1086 | 893 | 2939 | 2944 | 0\% | 23 |
| SSR-3 | 218 | 212 | 215 | 215 | 1622 | 1577 | 1600 | 4798 | 4321 | 10\% | 5 |
| SSR-4 | 156 | 173 | 165 | 165 | 1161 | 1287 | 1228 | 3675 | 3679 | 0\% | 15 |
| VTA-1 | 140 | 146 | 139 | 142 | 1042 | 1086 | 1034 | 3162 | 3095 | 2\% | 7 |
| VTA-2 | 156 | 149 | 106 | 137 | 1161 | 1109 | 789 | 3058 | 3068 | 0\% | 47 |
| VTA-3 | 68 | 65 | 64 | 66 | 506 | 484 | 476 | 1466 | 1453 | 1\% | 4 |
| VTA-4 | 286 | 290 | 282 | 286 | 2128 | 2158 | 2098 | 6383 | 6263 | 2\% | 7 |
| VTA-5 | 235 | 263 | 234 | 244 | 1748 | 1957 | 1741 | 5446 | 5491 | -1\% | 29 |
| VTA-6 | 106 | 107 | 101 | 105 | 789 | 796 | 751 | 2336 | 2340 | 0\% | 6 |
| VTA-7 | 302 | 296 | 296 | 298 | 2247 | 2202 | 2202 | 6651 | 6612 | 1\% | 6 |
| VTA-8 | 200 | 172 | 179 | 184 | 1488 | 1280 | 1332 | 4099 | 4090 | 0\% | 25 |
| ZEH-1 | 140 | 86 | 132 | 119 | 1042 | 640 | 982 | 2663 | 2587 | 3\% | 50 |
| ZEH-2 | 291 | 261 | 219 | 257 | 2165 | 1942 | 1629 | 5736 | 5691 | 1\% | 63 |
| ZEH-3 | 40 | 30 | 34 | 35 | 298 | 223 | 253 | 774 | 763 | 1\% | 9 |


| Table B6Feeder Metered Peak Amps |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | AØ | B $\varnothing$ | Cø | Total | Total | Calc to |  |
| Feeder | AØ | Bø | Cø | Avg. | Calc. | Calc. | Calc. | Calc. | Meas. | Meas kVA | Unbalance |
| Id | Amps | Amps | Amps | Amps | kVA | kVA | kVA | kVA | kVA | \% diff | Amps |
| ANG-9 | 149 | 167 | 165 | 160 | 1109 | 1242 | 1228 | 3578 | 3558 | 1\% | 17 |
| ANG-1 | 167 | 196 | 150 | 171 | 1242 | 1458 | 1116 | 3816 | 3776 | 1\% | 40 |
| ANG-2 | 174 | 160 | 140 | 158 | 1295 | 1190 | 1042 | 3526 | 3486 | 1\% | 30 |
| ANG-3 | 201 | 159 | 183 | 181 | 1495 | 1183 | 1362 | 4040 | 3971 | 2\% | 36 |
| ANG-4 | 158 | 180 | 143 | 160 | 1176 | 1339 | 1064 | 3578 | 3461 | 3\% | 32 |
| ANG-5 | 169 | 150 | 151 | 157 | 1257 | 1116 | 1123 | 3496 | 3501 | 0\% | 19 |
| ANG-6 | 146 | 196 | 167 | 170 | 1086 | 1458 | 1242 | 3787 | 3769 | 0\% | 43 |
| ANG-7 | 133 | 135 | 129 | 132 | 990 | 1004 | 960 | 2953 | 2961 | 0\% | 5 |
| ANG-8 | 122 | 189 | 149 | 153 | 908 | 1406 | 1109 | 3422 | 3451 | -1\% | 58 |
| BEC-1 | 157 | 157 | 156 | 157 | 1168 | 1168 | 1161 | 3496 | 3493 | 0\% | 1 |
| BEC-2 | 148 | 99 | 135 | 127 | 1101 | 737 | 1004 | 2842 | 2811 | 1\% | 44 |
| CCR-1 | 182 | 185 | 176 | 181 | 1354 | 1376 | 1309 | 4040 | 3986 | 1\% | 8 |
| ELY-1 | 150 | 121 | 100 | 124 | 1116 | 900 | 744 | 2760 | 2801 | -1\% | 43 |
| ELY-2 | 79 | 81 | 72 | 77 | 588 | 603 | 536 | 1726 | 1748 | -1\% | 8 |
| ELY-3 | 299 | 297 | 214 | 270 | 2225 | 2210 | 1592 | 6026 | 6071 | -1\% | 84 |
| ELY-4 | 327 | 325 | 330 | 327 | 2433 | 2418 | 2455 | 7305 | 7343 | -1\% | 4 |
| ELY-5 | 231 | 243 | 210 | 228 | 1719 | 1808 | 1562 | 5088 | 5057 | 1\% | 29 |
| ELY-6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | \#DIV/0! | 0 |
| ELY-7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | \#DIV/0! | 0 |
| ELY-8 | 159 | 106 | 148 | 138 | 1183 | 789 | 1101 | 3072 | 3216 | -5\% | 48 |
| GUM-1 | 222 | 183 | 238 | 214 | 1652 | 1362 | 1771 | 4783 | 4837 | -1\% | 49 |
| GUM-2 | 188 | 200 | 182 | 190 | 1399 | 1488 | 1354 | 4240 | 4221 | 0\% | 16 |
| GUM-3 | 133 | 141 | 151 | 142 | 990 | 1049 | 1123 | 3162 | 3182 | -1\% | 16 |
| GUM-4 | 236 | 192 | 212 | 213 | 1756 | 1428 | 1577 | 4761 | 4768 | 0\% | 38 |
| HEG-1 | 40 | 51 | 11 | 34 | 298 | 379 | 82 | 759 | 815 | -7\% | 36 |
| HEG-2 | 183 | 191 | 223 | 199 | 1362 | 1421 | 1659 | 4441 | 4466 | -1\% | 37 |
| HEG-3 | 158 | 102 | 117 | 126 | 1176 | 759 | 870 | 2805 | 2864 | -2\% | 50 |
| HEG-4 | 185 | 201 | 181 | 189 | 1376 | 1495 | 1347 | 4218 | 4208 | 0\% | 18 |
| HLS-1 | 183 | 144 | 126 | 151 | 1362 | 1071 | 937 | 3370 | 3342 | 1\% | 50 |
| HLS-2 | 290 | 261 | 269 | 273 | 2158 | 1942 | 2001 | 6100 | 5839 | 4\% | 26 |
| HLS-3 | 239 | 214 | 202 | 218 | 1778 | 1592 | 1503 | 4873 | 4615 | 5\% | 33 |
| HLS-4 | 133 | 196 | 108 | 146 | 990 | 1458 | 804 | 3251 | 3253 | 0\% | 79 |
| HLS-5 | 412 | 327 | 261 | 333 | 3065 | 2433 | 1942 | 7439 | 7238 | 3\% | 131 |
| HLS-6 | 148 | 115 | 142 | 135 | 1101 | 856 | 1056 | 3013 | 2972 | 1\% | 30 |
| HLS-7 | 165 | 168 | 193 | 175 | 1228 | 1250 | 1436 | 3913 | 3913 | 0\% | 27 |
| HLS-8 | 266 | 215 | 275 | 252 | 1979 | 1600 | 2046 | 5624 | 5622 | 0\% | 56 |
| HLS-9 | 207 | 245 | 156 | 203 | 1540 | 1823 | 1161 | 4523 | 4524 | 0\% | 77 |
| KEN-1 | 187 | 183 | 203 | 191 | 1391 | 1362 | 1510 | 4263 | 4277 | 0\% | 18 |
| KEN-2 | 127 | 182 | 192 | 167 | 945 | 1354 | 1428 | 3727 | 3726 | 0\% | 61 |
| KEN-3 | 206 | 183 | 215 | 201 | 1533 | 1362 | 1600 | 4493 | 4436 | 1\% | 29 |
| KEN-4 | 181 | 238 | 176 | 198 | 1347 | 1771 | 1309 | 4426 | 4379 | 1\% | 60 |
| KEN-5 | 249 | 238 | 249 | 245 | 1853 | 1771 | 1853 | 5475 | 5450 | 0\% | 11 |
| KEN-6 | 240 | 226 | 199 | 222 | 1786 | 1681 | 1481 | 4947 | 4854 | 2\% | 36 |
| KEN-7 | 157 | 160 | 177 | 165 | 1168 | 1190 | 1317 | 3675 | 3512 | 4\% | 19 |
| KEN-8 | 245 | 219 | 192 | 219 | 1823 | 1629 | 1428 | 4880 | 4841 | 1\% | 46 |
| KEN-9 | 112 | 85 | 114 | 104 | 833 | 632 | 848 | 2314 | 2325 | 0\% | 28 |
| LES-1 | 145 | 154 | 152 | 150 | 1079 | 1146 | 1131 | 3355 | 3341 | 0\% | 8 |
| LES-2 | 160 | 225 | 149 | 178 | 1190 | 1674 | 1109 | 3973 | 3979 | 0\% | 71 |
| LES-3 | 81 | 44 | 109 | 78 | 603 | 327 | 811 | 1741 | 1687 | 3\% | 56 |
| LES-4 | 19 | 63 | 39 | 40 | 141 | 469 | 290 | 900 | 896 | 0\% | 38 |
| ORV-2 | 96 | 121 | 108 | 108 | 714 | 900 | 804 | 2418 | 2460 | -2\% | 22 |
| ORV-3 | 174 | 160 | 183 | 172 | 1295 | 1190 | 1362 | 3846 | 3903 | -1\% | 20 |
| ORV-4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0\% | 0 |
| ORV-5 | 188 | 202 | 181 | 190 | 1399 | 1503 | 1347 | 4248 | 4307 | -1\% | - 19 |
| ORV-6 | 248 | 252 | 262 | 254 | 1845 | 1875 | 1949 | 5669 | 5544 | 2\% | 12 |
| PHL-6 | 264 | 272 | 259 | 265 | 1964 | 2024 | 1927 | 5914 | 5725 | 3\% | 11 |
| PHL-7 | 159 | 147 | 141 | 149 | 1183 | 1094 | 1049 | 3325 | 3376 | -2\% | 16 |
| PSR-1 | 192 | 205 | 193 | 197 | 1428 | 1525 | 1436 | 4389 | 4376 | 0\% | 13 |
| PSR-2 | 132 | 109 | 125 | 122 | 982 | 811 | 930 | 2723 | 2715 | 0\% | 20 |
| PSR-3 | 225 | 231 | 211 | 222 | 1674 | 1719 | 1570 | 4962 | 4852 | 2\% | 18 |
| PSR-4 | 262 | 210 | 256 | 243 | 1949 | 1562 | 1905 | 5416 | 5175 | 4\% | 49 |
| PSR-5 | 32 | 48 | 26 | 35 | 238 | 357 | 193 | 789 | 794 | -1\% | 20 |
| PSR-6 | 186 | 157 | 161 | 168 | 1384 | 1168 | 1198 | 3749 | 3647 | 3\% | 27 |
| RTA-1 | 95 | 110 | 97 | 101 | 707 | 818 | 722 | 2247 | 2196 | 2\% | 14 |
| RTA-2 | 284 | 282 | 275 | 280 | 2113 | 2098 | 2046 | 6256 | 6038 | 3\% | 8 |
| RTA-3 | 114 | 161 | 109 | 128 | 848 | 1198 | 811 | 2857 | 2812 | 2\% | 50 |
| RTA-4 | 90 | 85 | 93 | 89 | 670 | 632 | 692 | 1994 | 1982 | 1\% | - 7 |
| RVF-1 | 216 | 162 | 223 | 200 | 183 | 1205 | 1659 | 4471 | 4275 | 4\% | 58 |
| RVF-2 | 28 | 4 | 4 | 12 | 208 | 30 | 30 | 268 | 469 | -75\% | 24 |
| RVF-3 | 121 | 130 | 120 | 124 | 900 | 967 | 893 | 2760 | 2725 | 1\% | 10 |
| SSR-1 | 209 | 232 | 171 | 204 | 1555 | 1726 | 1272 | 4553 | 4423 | 3\% | 53 |
| SSR-2 | 102 | 156 | 160 | 139 | 759 | 1161 | 1190 | 3110 | 3380 | -9\% | 56 |
| SSR-3 | 225 | 205 | 198 | 209 | 1674 | 1525 | 1473 | 4672 | 4479 | 4\% | - 24 |
| SSR-4 | 147 | 113 | 122 | 127 | 1094 | 841 | 908 | 2842 | 2587 | 9\% | 31 |
| VTA-1 | 141 | 119 | 125 | 128 | 1049 | 885 | 930 | 2864 | 2758 | 4\% | - 20 |
| VTA-2 | 144 | 139 | 133 | 139 | 1071 | 1034 | 990 | 3095 | 2703 | 13\% | 10 |
| VTA-3 | 67 | 58 | 63 | 63 | 498 | 432 | 469 | 1399 | 1388 | 1\% | 8 |
| VTA-4 | 180 | 259 | 250 | 230 | 1339 | 1927 | 1860 | 5126 | 5446 | -6\% | 75 |
| VTA-5 | 214 | 224 | 241 | 226 | 1592 | 1667 | 1793 | 5051 | 5134 | -2\% | - 24 |
| VTA-6 | 56 | 60 | 57 | 58 | 417 | 446 | 424 | 1287 | 1314 | -2\% | - 4 |
| VTA-7 | 279 | 273 | 268 | 273 | 2076 | 2031 | 1994 | 6100 | 6105 | 0\% | 10 |
| VTA-8 | 264 | 240 | 248 | 251 | 1964 | 1786 | 1845 | 5594 | 5588 | 0\% | 21 |
| ZEH-1 | 131 | 73 | 106 | 103 | 975 | 543 | 789 | 2306 | 2249 | 2\% | 50 |
| ZEH-2 | 230 | 198 | 199 | 209 | 1711 | 1473 | 1481 | 4664 | 4612 | 1\% | - 32 |
| ZEH-3 | 19 | 11 | 22 | 17 | 141 | 82 | 164 | 387 | 382 | 1\% | - 10 |

## Appendix C

## Bank Peaks

# [This Page Intentionally Left blank\} [For Two Sided Printing] 














## Appendix D

## Customer Growth

# [This Page Intentionally Left blank\} [For Two Sided Printing] 

## Customer Growth Overview

Prosser Area - In December 2017 the City of Prosser (COP) held a meeting with local utilities to share a plan to extend city services to existing undeveloped land within the city limits. The infrastructure expansion is expected to bring about the construction of up to 500 new homes play fields and an Amphitheater. The first development has been received by customer engineering and will include 140 residential lots north of Old Inland Empire Highway west of Gap Road. This development will be fed from River Front Substation (feeder RVF-3) which currently has roughly 4 MW of capacity remaining. The Playfields and Amphitheater along with part of the 500 new homes would be developed near Old Inland Empire Highway, Bettison Road and the Chandler Canal and could be served by Prosser Substation (feeder PSR-2) which currently has 4.5 MW of capacity remaining.

In Summer 2017 Prosser Bay 2 Load was made up of more than $50 \%$ Benton REA (BREA) load (10.9 MW). For the 2020 Plan Prosser Bay 2 load was made up of approximately 42\% BREA load (7.8 MW). BREA's current schedule will energize Huard substation fall 2022 that will relieve some loading on the bay 2 power transformer. BREA is also planning on installing a substation bay in their equipment yard adjacent to Prosser substation. This bay will remove the remaining BREA load from the bay 2 power transformer. Currently during contingencies the District is unable to pick up all native load for Prosser Bay 1 during the summer and for Riverfront during both summer and winter. Projects have been identified that will allow for picking up of all native load on Prosser Bay 1. However, picking up native load for Riverfront requires either a REA load reduction on Prosser Bay 2 or a bay capacity increase for Prosser Bay 1 and Bay 2 to allow for more efficient use of the feeder infrastructure. During a Prosser Bay 2 outage the District would not be able to support BREA load. BREA has been notified of the deficiency should a contingency occur and may request that the District install its Mobile Substation assuming it is not otherwise in use.

Benton City/Red Mountain Area - The Kennewick Irrigation District (KID) has completed the Demoss Road Pumping station and the "810 Reservoir" near Via Antinori Road; both became operational in 2016. Land development has continued to occur in the area including vineyards, wine making, and other agricultural support. Growth in the area has slowed as the area continues to mature and development moves beyond the District's service territory and into Benton REA's service territory. The Port of Kennewick and the City of West Richland are working with the Department of Transportation to revive the Red Mountain Interchange project which has the potential to result in some further growth in the District's territory but no additional progress has been announced. Load transfer capability from Sunset Road Substation to Benton City Substation is limited due to circuit distance and the increasing load resulting in the need to employ the Mobile substation for a Sunset Rd. outage during both Summer and Winter peak events. This is driving the requirement for additional capacity in the way of a new Benton City Substation Feeder to the area.

Badger Canyon/Reata Area - Development in the Summit View, Ridge at Reata West, and continued development in the Cottonwood Springs Area has led to increasing residential loads in the area over the last few planning cycles. The installation of Leslie Road Substation and Orchard View Bay 2 allowed for significant load reduction of Reata Substation. However feeder

RTA-2 remains heavily loaded. Projects have been identified to reduce loading on RTA-2, but this is a short term solution should load growth continue. The medium to long term plan for load reduction on feeders RTA-2 and SSR-4 requires the installation of the future Badger Canyon Substation.

Previously the District was evaluating partnering with City of Richland on their Dallas Rd substation site in much the same vein as the agreement on Leslie Road. While this site should be kept in mind as a backup, the Dallas Rd site is far from ideal as it is located away from the load it would need to serve, and feeder routes out of the area are extremely constrained.

While the construction of Badger Canyon substation is beyond the scope of the 2022 FYP, the District needs to move towards evaluating properly for purchase, preferentially near L80R. This location places the substation local to the loads it would serve; and provides a crossroads of existing main line conductor that would facilitate feeder distribution out of the substation.

Kennewick Urban Growth Area (UGA) - Approximately 500 acres south of I-82 and west of U.S. 395 are included within the recently approved Urban Growth Area (UGA) expansion. The city has indicated that this area will be zoned for commercial/industrial development similar to the Brinkley Rd. area. The City of Kennewick has not yet developed infrastructure into the area. The District currently has a circuit going east to west on Christianson Rd. that is an extension of Southridge Substation (feeder STH-2), however it is a small tie line that is used to pick up load in the Triple Vista Area of Badger Canyon should outages occur. This line can be upgraded to accommodate short term growth until additional capacity is installed. Southridge Substation includes a transmission tap that can be extended to follow the same STH-2 route to a future substation site that would likely be located on the south side of I-82 in the UGA area near Locust Grove Rd. Additionally the District has acquired property for the future Ridgeline substation that would support medium term growth. Commercial/Industrial growth in the proposed UGA will be needed in order to foster a new substation project.

Southridge Area - The City of Kennewick has developed a master plan to coordinate the development of the Southridge Planning Area. The Southridge Planning Area is about 2,500 acres of mostly undeveloped land. The Southridge area is located on the south end of Kennewick, between U.S. 395 and Clodfelter Road. It is expected that the area will be developed over a 40-year period and is being planned for the following:

- $\approx 1100$ acres of residential units (houses, condos and apartments)
- 64 acres of light industrial development
- 92 acres of commercial/office space
- 20 acres of village center type area.

Based on load densities in similar areas currently served by the District it is estimated this type of development would have a peak demand of about 32 MW . Ultimately, it is expected the District will need two substations to serve this area. Fortunately, BPA has a double circuit 115 kV transmission line running through the area that can be tapped to serve new substations.

A number of major projects are in the planning phases for the Southridge area as you move west from S. Sherman Street. Currently, the Southcliffe and Apple Valley developments are the largest, and include a total of 1,045 residential lots.

On the west end of the Southridge area feeder ORV-3 from Orchard View Bay 1 serves current loads. Additional feeders from Orchard View Bay 1 (ORV-1) \& Bay 2 (ORV-7, ORV-8) will be used to support growth in the western end of the Southridge area. On the east end a feeder from Southridge Bay 1 (STH-4) and Highlands feeder HLS-5 will be used to support growth on the eastern end of the Southridge area. Purchase of the Ridgeline substation property in the middle portion the development area is complete and will be utilized to accommodate long term growth in the area.

Peak summer loading was utilized for the study as the winter loading is not as extreme in the Southridge area due to gas heating. The summer air conditioning loads are all electric.

On the east end feeders HLS-5 and STH-4 have a capacity for an additional 12 MW of peak load based on temperature corrected Summer 2021 loading. For the west end ORV-3 has approximately 1 MW of capacity. Load growth beyond these limits or the arrival of commercial "anchor tenants" along the Hildebrand/Bob Olson Parkway corridor will require extension(s) of Orchard View Substation (feeders ORV-1 \& ORV-7) to the area via conduit infrastructure installed during construction of Bob Olsen Pkwy. This expansion would include conductor installations for ORV-3 to facilitate feeder ties.

While the city's plans to extend Ridgeline Drive from S. Sherman St to Clodfelter Road is being modified due to being unable to acquire all the land on the preferred path, the city continues to have future plans for installing freeway entry/exit ramp(s) that will feed into the area from I-82 and provide additional access to the City of Kennewick UGA expansion on the south side of I82. The extension of these roads allows the District to expand its infrastructure as well. It is planned that this area will continue to be served with existing area feeders in the near term. With the addition of Orchard View Bay 2, feeder support will be routed in from the west as necessary and will make ties with feeders from Southridge Substation. Continuing to extend new feeders into the area, creating new feeder ties and upgrading the existing facilities will establish the distribution circuits needed for medium term future growth. Longer term growth will be supported by the future installation of Ridgeline substation.

See appendix G (Capitol Planning Strategic Planning Discussion, June 13, 2017)
Vista Field - In October 2017, the Port of Kennewick approved a master plan to coordinate the development of the approximately 100 acre Vista Field area. The Port's plan anticipated developing the area over an 8 -year period over 8 phases and is being planned for the following:

- 1,095 residential units (houses, condos and apartments)
- 740,000 sq. ft. of commercial/office space

It is estimated this type of development would have a peak demand of approximately 13 MW (5.5 MW of residential load and 7.5 MW of commercial/office load). The Port's initial schedule indicated that that the design for the first phase will take place during 2018, with construction during 2018/2019. While the Port does have a schedule for phased development, the timeline is fluid as it is dependent on the Port attracting developers and tenants. COVID-19 impacts limited opportunities for new businesses to move into the area over the previous planning cycle. Several major system upgrade projects have been completed in this area and several are planned to ensure that the distribution system is adequate to serve the undeveloped areas within Vista Field.

Feeders from Orchard View Bay 1 (ORV-4) and Bay 2 (ORV-5) and Vista Bay 1 (VIS-4) will be utilized to cover the near term load growth of the Vista field area. As loads continue to grow in this area, the District owns a substation site on Edison Street that is currently slated to be energized in 2027 to support long-term development and relieve existing feeders. The plan for Vista Field is currently for a complete build out in the year 2031. Although the master plan that was approved by the Port of Kennewick indicated an 8-year buildout, the District is assuming a slower buildout with one phase completed every other year. With the addition of an express feeder from Orchard View Bay 1 (ORV-4) into Vista Field, plus available capacity in the vicinity of Vista Field, the District will have 9.2 MW available utilizing Vista Substation (feeder VIS - 4) Orchard View Substation (feeders ORV-4, ORV-5). This should be considered a shorter-term solution, however, if additional Electrically Intense Load (EIL) tenant or tenants were to be located in the area, the long term plan would be to utilize new conduits installed down Metaline Ave. to install feeders from the future Edison Street Substation site.

Bridge to Bridge/River to Railroad Project - The City of Kennewick, Port of Kennewick, Downtown Kennewick, and Columbia Drive Association formed the Historic Downtown Kennewick Partnership. The partnership hired a consulting team in 2003 to develop a plan for the future of the area roughly between the Blue and Cable Bridges from the Columbia River to Canal Drive. The result was a 20 year plan that laid out a vision the group had for redevelopment of the area.

While the Port of Kennewick has built a few commercial buildings and has near term plans for a small culinary school, significant development or increased load appears to be outside of the scope of the Five Year Plan. The first 10 years were concentrated on laying the ground work and getting funding. Significant load increases were expected in the 10 to 20 year time frame. While we are currently nearing the end of the 10-20 year timeframe, load has been materializing at a slow rate. The Study had low, medium, and high forecasts for growth. The medium forecast expected an additional 82 boat slips, $71,350 \mathrm{sq}$. ft of retail space, 125 lodging rooms, 277,500 sq. ft. of office space, 615 residential units ( 530 condominiums and 85 apartments), and 100 RV spaces.

Currently Kennewick Substation (feeders KEN - 4 \& KEN - 1) feed the west end and east end respectively in the development area. Their combined available capacity is about 3MW and about $60 \%$ of that capacity on KEN-4 on the west end. Should load growth accelerate, it is anticipated the District could serve this area from either the future Oak Street Substation on
the east end or form the future Entiat Street substation site near Fruitland Park on the west end.

Future Main Feeder Routes -- Areas within our system have also been identified for potential future main feeder routes. These areas are typically denoted on our system planning maps as a reminder that we may be upgrading in the future and that it may be feasible to upgrade these areas or install spare conduit and vaults when doing other projects or customer development is going on in the area. Additionally, as conductor upgrades are required on main portions of feeders in town, the standard practice is to install 556.4 AAC.

# [This Page Intentionally Left blank\} [For Two Sided Printing] 

Table D1-Customer Growth List

| Map Key | Project Name or Customer | Area Eng. | Growth Potential ${ }^{1}$ | Electrical Status | Cust. Type ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Kennewick Area |  |  |  |  |  |
| A6-A | Zook apartments (JO\#583323) | Chad | 24 unit apartment | Installed | Res |
| E1-A | $\begin{aligned} & \text { Zintel Creek } \\ & \text { (JO\# 602477) } \end{aligned}$ | Tina | 11 Lots Left | Installed | Res |
| E3-A | Southridge Development Ph 6 (JO \#595616) (See H5-C) | Rick | 7 remaining | Installed | Res |
| E3-B | COK Creekstone Reservoir (JO\#586171) | Chad | (2) 75 HP pumps 3 future 125 HP | Operations | Com |
| E3-C | Southridge Dental (JO\#604909) | Chad | 1200A 3-ph | Installed | Com |
| E6-A | Lauria Meadows (JO \#539155) | Tina | $\begin{gathered} \hline 2 \text { lots } \\ \text { remaining } \end{gathered}$ | Installed | Res |
| G1-A | Highland View Heights subdivision (JO \#514484) | Shanna | $\begin{gathered} 2 \text { lots } \\ \text { remaining } \end{gathered}$ | Installed | Res |
| G1-B | Orchard View (JO \#612610) | Tina | 6 Lots remaining | Installed | Res |
| G1-C | Highland Vineyards (JO \#626006) | Chad | 37 lots | Design | Res |
| G4-A | Schmelzer SR-397 Seal Springs (JO \#107002) | Dave | $\begin{gathered} 3 \text { lots } \\ \text { remaining } \end{gathered}$ | Installed | Res |
| G4-C | Kingwood Phase 1 - Brad Beauchamp (JO \#533995) | Shanna | $\begin{gathered} 6 \text { lots } \\ \text { remaining } \end{gathered}$ | Installed | Res |
| G4-E | $\begin{gathered} \text { Nunez } \\ \text { (JO \#589815) } \end{gathered}$ | Shanna | 2-5 acre lots | Installed | Res |
| HE3-A | $\begin{aligned} & \text { GMP orchards - Migrant housing } \\ & \text { (JO \#525996) } \\ & \hline \end{aligned}$ | Shanna | 4-200a services 3 services remain | Installed | Res |
| HE4-A | Rocking River (JO\#633745) | Chad | $\begin{aligned} & \text { (2) 600A 3-ph } \\ & \text { (2) 200A 1-ph } \\ & \hline \end{aligned}$ | Installed | Com |
| H1-A | Citiadel Estates (JO \#616029) (See H5-D) | Chad | 36 lots | Design | Res |
| H2-B | Anderson short plat (JO\#567980) | Chad | 1 lots | Installed | Res |
| H2-C | Fairchild short plat (JO\#572020) | Chad | 8 lots | Designed | Res |
| H3-A | ield Area - see H3, O4, O5, V4 (build A9 to su |  |  |  |  |
|  | Vista Field Development Phase 2 <br> (2025) - Split between O5 \& H3- See O5-A | Mike | 0.3 MW Res 0.55 MW Com | Planning | Res/Com |
|  | Vista Field Development Phase 4 (2029) - Split between H3 \& V4 - See V4-A | Mike | 0.3 MW Res 0.05 MW Com | Planning | Res/Com |
|  | Vista Field Development Phase 7 <br> (2031) - Split between V4 \& H3 - See V4-A | Mike | 0.48 MW Res 0.25 MW Com | Planning | Res/Com |
|  | Vista Field Development Phase 8 (2037) - Split between V4 \& H3 - See V4-A | Mike | 0.34 MW Res 0.48 MW Com | Planning | Res/Com |
| H3-D | JSI Construction (JO\#590003) | Chad | Office building | Operations | Com |
|  | JSI Construction (future) |  | Future office bldg | Planning Planning | Com |
| H4-A | Circle K Remodel (JO\#614215) | Chad | 1600A 3-ph | Installed | Com |
| H5-A | Symphone Ridge Ph 1 (JO\# 587394) | Chad | 4 Lots Remaining | Installed | Red |
|  | Symphony Ridge Ph2 (future) | Chad | 21 lots | Planning | Res |
| H5-B | Valley View Homes (JO \#605792) | Chad | 32 lots | Operations | Res |
| H5-C | South Ridge PH 5 (\#516877) (See E3-A) | Dave | 1 Lots remaining | Installed | Res |
|  | $\begin{aligned} & \text { Southridge Ph 7, 16, } 20 \\ & (\mathrm{JO} \# 608070)(\text { See E3-A) } \end{aligned}$ | Chad | 36 lots remaining | Planning | Res |
|  | Southridge Development Future Phases | Rick | $\begin{gathered} 95 \text { lots } \\ \text { remainina } \end{gathered}$ | Planning | Res |
| H5-D | Citiadel Estates (JO \#616029) (See H1-A) | Chad | 36 lots | Design | Res |

Table D1-Customer Growth List - Continued

| Map Key | Project Name or Customer | Area Eng. | Growth Potential ${ }^{1}$ | $\begin{aligned} & \hline \text { Electrical } \\ & \text { Status }^{1} \end{aligned}$ | Cust. Type ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Kennewick Area (Continued) |  |  |  |  |  |
| H5-E | Southridge Development Ph7\&8 (JO\#549856) | Chad | 2 lots remaining | Installed | Res |
|  | Southridge Development Future Phases (See E3-A) | Rick | $\begin{gathered} 23 \text { lots } \\ \text { remaining } \end{gathered}$ | Planning | Res |
| H5-F | $\begin{aligned} & \text { Southcliffe Phase } 2 \\ & \text { (JO \#551203) } 14 \text { Lots } \end{aligned}$ | Chad | 8 lots Remaining | Installed | Res |
|  | Southcliff Phase 4 (\#513345) | Dave | $\begin{gathered} 2 \text { Lots } \\ \text { Remaining } \\ \hline \end{gathered}$ | Installed | Res |
|  | Southcliff Phase 5 (\#574933) | Chad | 8 Lots Remaining | Installed | Res |
|  | Southcliffe Phase7 <br> (JO \#615851) | Chad | 16 lots | Design | Res |
|  | Southcliffe, Sherman Rd., Milo Bauder, Phase 6-15 | Rick | 274 lots remaining | Planning | Res |
| H7-A | AAA Storage Units/office building (JO\#557275) | Chad | 600A 3-ph(done) 800A 3-ph(future) | Installed Planning | Comm |
| H9-A | Hansen Park Mixed Use (JO\#641921) (See O3-B) | Shanna | 96 apartments $75 \mathrm{apt}+$ mixed use | Desgn | Res/Com |
| K3-A | Habitat for Humanity (JO \#125893) | Ken | $\begin{gathered} 3 \text { Lots } \\ \text { remaining } \end{gathered}$ | Installed | Res |
| K4-A | Clover Island Misc.??? | Dave | 3 buildings | Installed | Com |
| K4-B | Clover Island Mobile Home Park, Blue Bridge | Rick | Unknown | Planning | Com |
| K4-C | PMI Townhomes - Entiat (JO\# 618838) | Tina | 36 Townhomes | Installed | Res |
| K8-A | $\begin{gathered} \text { Carbitex } \\ (\mathrm{JO} \# 624143) \end{gathered}$ | Chad | 800A 3-ph | Installed | Com |
| K9-A | Washington Meadows (JO\#636379) | Chad | 18 lots | Operations | Res |
| L1-A | Badger Canyon Apartments (See O3-E) | Rick | 596 units $94.44 \%$ Occupied | Installed | Res |
|  | Badger Canyon Apartments | Rick | 1 bldgs. 48 units | Installed | Res |
| L1-C | $\begin{gathered} \hline \text { Canyon Ranch Ph 9 \& } 10 \\ (\# 527809) \\ \hline \end{gathered}$ | Dave | $\begin{gathered} 7 \text { Lots } \\ \text { remaining } \end{gathered}$ | Installed | Res |
| L1-F | Canyon Ranch Phase 2 (JO \#117179) | Rick | $\quad$lot <br> remaining | Installed | Res |
| L2-B | $\begin{gathered} \hline \text { Cottonwood Creek Ph3 } \\ (\# 532446) \\ \hline \end{gathered}$ | Chad | $\begin{gathered} 29 \text { lots } \\ \text { remaining } \\ \hline \end{gathered}$ | Installed | Res |
|  | Cottonwood Creek Ph. 4 (JO\# 645333) | Tina | 13 Lots | Design | Res |
| L2-C | J. Sullins, Cottonwood Dr. (JO \#105290) | Ken | $\begin{gathered} 1 \text { lot } \\ \text { remaining } \end{gathered}$ | Installed | Res |
| L2-D | A. Sidibe, Cottonwood Dr. (JO \#105264) | Ken | 3 lots remaining | Installed | Res |
|  | Sidibe, Aissata (JO \#124826) | Dave | $\begin{gathered} 1 \text { lot } \\ \text { remaining } \end{gathered}$ | Installed | Res |
|  | Aissata Sidibe (JO \#123891) | Dave | 1 lot remaining | Installed | Res |
| L2-G | $\begin{gathered} \text { Wiser } \\ (\# 516974) \end{gathered}$ | Chad | 5-5acre lots 2-5acre remaining | Installed | Res |
| O2-A | $\begin{aligned} & \text { Crimson Hills } \\ & \text { (JO\#618016) } \end{aligned}$ | Shanna | 138 lots | Installed | Res |
| O3-A | Apple Valley Future (See S4-A) | Chad | 151 Lots remaining | Planning | Res |
| O3-B | Hansen Park Mixed Use (JO\#641921) (See H9-A) | Shanna | 96 apartments $75 \mathrm{apt}+$ mixed use | Desgn | Res/Com |
| O3-C | $\begin{gathered} \hline \text { Hansen Park, Div } 4 \text { Ph } 4 \\ (J O \# 106635) \end{gathered}$ | Rick | $\begin{gathered} 3 \text { lots } \\ \text { remaining } \end{gathered}$ | Installed | Res |
| O3-D | $\begin{gathered} \text { Ridge at Hanson Park Ph } 2 \\ \text { (\#526423) } \\ \hline \end{gathered}$ | Dave | 2 Lots remaining | Installed | Res |

Table D1-Customer Growth List - Continued

| Map Key | Project Name or Customer | Area Eng. | Growth Potential ${ }^{1}$ | Electrical Status ${ }^{1}$ | Cust. $\text { Tvoe }{ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Kennewick Area (Continued) |  |  |  |  |  |
| O3-E | Badger Canyon Apartments (See L1-A) | Rick | $\begin{gathered} 596 \text { units } \\ 94.44 \% \text { Occupied } \end{gathered}$ | Installed | Res |
| O3-F | Lenkersdorfer, Travis Ln (JO \#124003) | Dave | $\begin{gathered} 1 \text { lot } \\ \text { remaining } \end{gathered}$ | Installed | Res |
| O3-G | Western Construction Rock Crusher (JO \#646052) | Tina | 4000A Service | Design | Comm |
| O3-H | Mammoth Acres (JO\# 639685) | Tina | 12 Lots | Design | Res |
| O3-1 | Anderson (JO \#595270) | Shanna | 10 Lots remaining | Installed | Res |
| O3-J | KID Amon Pump (JO\#614208) | Chad | 200HP pump addition | Installed | Irr |
| O4-A | Vista Field Area - see H3, O4, O5, V4 (build A9 to support) |  |  |  |  |
|  | Vista Field Development Phase 1 <br> (2023) - Split between O4 \& O5 - See O5-A | Mike | 0.43 MW Res 1.2 MW Com | Planning | Res/Com |
|  | Vista Field Development Phase 3 <br> (2027) - Split between O4 \& O5 - See O5-A | Mike | 0.29 MW Res 0.23 MW Com | Planning | Res/Com |
|  | Vista Field Development Phase 5 (2031) - Split between O4 \& O5-See O5-A | Mike | 0.17 MW Res 0.05 MW Com | Planning | Res/Com |
|  | Vista Field Development Phase 6 <br> (2033) - Split between O4 \& O5 - See O5-A | Mike | 0.47 MW Res 0.9 MW Com | Planning | Res/Com |
| O5-A | Vista Field Area - see H3, O4, O5, V4 (build A9 to support) |  |  |  |  |
|  | Vista Field Development Phase 1 <br> (2023) - Split between O4 \& O5 - See O4-A | Mike | 0.43 MW Res 1.2 MW Com | Planning | Res/Com |
|  | Vista Field Development Phase 2 <br> (2025) - Split between O5 \& H3 - See H3-A | Mike | 0.3 MW Res 0.55 MW Com | Planning | Res/Com |
|  | Vista Field Development Phase 3 | Mike | 0.28 MW Res 0.23 MW Com | Planning | Res/Com |
|  | Vista Field Development Phase 5 (2031) - Split between O4 \& O5 - See O4-A | Mike | 0.17 MW Res 0.05 MW Com | Planning | Res/Com |
|  | Vista Field Development Phase 6 (2033) - Split between O5 \& H7 - See H7-B | Mike | 0.47 MW Res 0.9 MW Com | Planning | Res/Com |
| O6-A | $\begin{gathered} \hline \text { Hansen Park, Div } 4 \text { Ph } 3 \\ (J O \# 108349) \end{gathered}$ | Rick | $\begin{gathered} 1 \text { lot } \\ \text { remaining } \end{gathered}$ | Installed | Res |
|  | Hansen Park, Div 4 Ph 4 (JO\#106635) | Rick | $\begin{gathered} 1 \text { lot } \\ \text { remaining } \end{gathered}$ | Installed | Res |
| O6-B | TMG NW Commercial Bldg (JO\#594303) | Chad | 1600A 3-ph (1) 400 A CT, (6)200A | Installed | Com |
| P7-A | Provision Capital (JO \#582587) | Rick | $\begin{gathered} \text { (1) } 2500 \mathrm{kVA} \\ \text { xfmr } \\ \hline \end{gathered}$ | Installed | EIL |
| P7-B | $\begin{gathered} \text { Purdie } \\ (\mathrm{JO} \mathrm{\# 627104}) \end{gathered}$ | Chad | 2500A 3-ph | Installed | Com |
| R1-A | Steeplechase Phase 1\&2 (JO \#576483) (See R3-A) | Shanna | $\begin{gathered} 16 \text { lots } \\ \text { remaining } \end{gathered}$ | Installed | Res |
|  | Steeplechase Future Phase | Shanna | 26 lots | Planning | Res |
| R1-B | $\begin{gathered} \hline \text { Ridgeview Lane } \\ \text { (JO \#576479) } \\ \hline \end{gathered}$ | Shanna | $\begin{gathered} \hline 4 \text { lots } \\ \text { remaining } \end{gathered}$ | Installed | Res |
| R1-C | Bridlewood Subdivision (JO \#579212) | Shanna | $\begin{gathered} 1 \text { lot } \\ \text { remaining } \end{gathered}$ | Installed | Res |
| R1-D | Bermuda Infill (JO \#639684) | Tina | 12 Lots | Operations | Res |
| R2-A | $\begin{aligned} & \text { Country Acres } \\ & \text { (JO \#599244) } \\ & \hline \end{aligned}$ | Shanna | 14 lots | Installed | Res |
| R2-B | Harvest Ridge Ph. 1 (JO\# TBD) | Tina | 42 Lots | Design | Res |
| R2-E | $\begin{gathered} \hline \text { Country Heights } \\ \text { (JO \#22108) } \\ \hline \end{gathered}$ | Ken | 3 lots remaining | Installed | Res |
| R2-F | Booth, Goose Gap Rd (JO \#125922) | Rick | $\begin{gathered} 2 \text { lots } \\ \text { remaining } \end{gathered}$ | Installed | Res |

Table D1-Customer Growth List - Continued


Table D1-Customer Growth List - Continued

| Map Key | Project Name or Customer | Area Eng. | Growth Potential ${ }^{1}$ | $\begin{gathered} \text { Electrical } \\ \text { Status }^{1} \end{gathered}$ | $\begin{aligned} & \hline \text { Cust. } \\ & \text { Tvone } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Kennewick Area (Continued) |  |  |  |  |  |
| Z1-A | Heights at Canyon Lakes (JO \#21640) | Dave | 1 lot remaining | Installed | Res |
|  | Heights at Canyon Lakes Ph 5 (JO \#117436) (JO \#117436) | Dave | $\begin{gathered} 2 \text { lots } \\ \text { remaining } \end{gathered}$ | Installed | Res |
|  | Heights at Canyon Lakes Future | Dave | 45 lots remaining | Installed | Res |
| Z1-B | South Hill Estates Ph1 (\#130091) | Shanna | 7 lots remaining | Installed | Res |
|  | South Hill Estates Ph2 <br> (\#577710) | Tina | 27 lots remaining | Installed | Res |
|  | South Hill Estates Ph3 (JO \#577710) | Tina | 27 lots | Installed | Res |
| Z1-C | Beauchamp Home (JO\# 609621) | Tina | 800A Service | Installed | Res |
| Z1-D | Zintel Canyon (JO\# 604768) | Tina | 6 Lots Left | Installed | Res |
| Z2-A | Inspiration Estates Ph 4 (JO \#105903) | Ken | $\begin{gathered} 1 \text { lot } \\ \text { remaining } \end{gathered}$ | Installed | Res |
|  | Inspiration Estates Ph V, W 52 (JO \#118537) | Rick | $\begin{gathered} 2 \text { lots } \\ \text { remaining } \end{gathered}$ | Installed | Res |
|  | Inspiration Estates Ph 7, W 52 (JO \#124558) | Rick | $\begin{gathered} 6 \text { lots } \\ \text { remaining } \end{gathered}$ | Installed | Res |
|  | $\begin{gathered} \text { Inspiration estates PH } 8 \\ (\mathrm{JO} \# 515700) \end{gathered}$ | Shanna | $\begin{gathered} 8 \text { lots } \\ \text { remaining } \end{gathered}$ | Operations | Res |
| Z2-B | Cherry Creek Phase 1 <br> (JO \#114616) | Dave | 2 lots remaining | Installed | Res |
|  | Cherry Creek Phase 3 (JO \#130224) | Shanna | $\begin{aligned} & 3 \text { lots } \\ & \text { remaining } \end{aligned}$ | Installed | Res |
| Z2-C | Sunrise Ridge-Jim Aust Phase 1\& 2 <br> (JO \#519961 \& \#526055) | Shanna | $\begin{gathered} 5 \text { lots } \\ \text { remaining } \end{gathered}$ | Installed | Res |
|  | $\begin{gathered} \text { Sunrise Ridge Ph } 3 \\ (\mathrm{JO} \# 597000) \end{gathered}$ | Tina | 17 Lots | Installed | Res |
| Benton City Area |  |  |  |  |  |
| B1-A | Botaka Addition (JO \#21734) | Ken | $\begin{gathered} 1 \text { lot } \\ \text { remaining } \end{gathered}$ | Installed | Res |
| B2-A | Wrangler Addition (JO \#115564) | Ken | $\begin{gathered} 1 \text { lot } \\ \text { remaining } \end{gathered}$ | Installed | Res |
| B2-B | $\begin{gathered} \hline \text { Blacktop Estates Phase 1, 2, \& } 3 \\ \text { (JO \#592711) } \\ \hline \end{gathered}$ | Shanna | 24 Lots remaining | Installed | Res |
| B2-C | $\begin{gathered} \text { Gomez, 11th St } \\ (\mathrm{JO} \# 126060) \\ \hline \end{gathered}$ | Rick | $\begin{gathered} 2 \text { lots } \\ \text { remaining } \\ \hline \end{gathered}$ | Installed | Res |
| B2-D | River North Subdivision (JO \#TBD) | Tina | 50 Lots | Design | Res |
| B2-E | Vintners Vista (JO \#TBD) | Tina | 31 Lots | Design | Res |
| SR2-A | $\begin{gathered} \hline \text { Yakitat Pl., Cohu Torchey } \\ \text { (JO \#111174) } \end{gathered}$ | Ken | $\begin{gathered} \hline 2 \text { lots } \\ \text { remaining } \end{gathered}$ | Installed | Res |
| SR4-A | CW Asphault (JO \#646416) | Tina | 3000A Service | Operations | Comm |

Table D1-Customer Growth List - Continued

| Map Key | Project Name or Customer | Area Eng. | Growth Potential ${ }^{1}$ | Electrical Status ${ }^{1}$ | Cust. <br> Tvne ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| P1-A | Tree Top (JO \#627624) | Tina | 5000A Service | Operations | Comm |
| P3-A | Candy Mt Construction (JO \#513384) | Chad | 3-5acre lots 1-5acre lot remain | Installed | Res |
| P6-A | Red Blend Villas <br> (JO \#557269) | Shanna | $\begin{gathered} 8 \text { lots } \\ \text { remaining } \end{gathered}$ | Installed | Res |
| P6-B | Hidden Park (JO \#635846) | Tina | 11 Townhomes | Operations | Res |
| RF3-A | Mustang Estates Ph. 1 (JO \#620629) | Tina | 40 Lots | Operations | Res |

Notes: 1. Growth potential and electrical status estimated as of 03/2022. 2. Customer type, Res $=$ Residential, Com $=$ Commercial, Irr $=$ Irrigation, ElL = Electrically Intensive Load





| Table D2Rate Schedule Count by Feeder as of March 2022 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} \overline{\boxed{0}} \\ \hline \end{array}$ |  |  |  |  |  |  |  |
| Angus Substation |  |  |  |  |  |  |  |  |
| ANG-3 | 1,018 | 809 | 190 | 18 | 1 | 0 | 0 | 0 |
| ANG-4 | 405 | 206 | 161 | 38 | 0 | 0 | 0 | 0 |
| ANG-5 | 1,071 | 1,003 | 60 | 6 | 2 | 0 | 0 | 0 |
| Bank 1 | 2494 | 2018 | 411 | 62 | 3 | 0 | 0 | 0 |
| ANG-6 | 871 | 745 | 103 | 20 | 3 | 0 | 0 | 0 |
| ANG-7 | 662 | 538 | 111 | 12 | 1 | 0 | 0 | 0 |
| ANG-8 | 1,132 | 1,065 | 61 | 6 | 0 | 0 | 0 | 0 |
| Bank 2 | 2665 | 2348 | 275 | 38 | 4 | 0 | 0 | 0 |
| ANG-9 | 925 | 888 | 35 | 1 | 1 | 0 | 0 | 0 |
| ANG-1 | 752 | 705 | 45 | 2 | 0 | 0 | 0 | 0 |
| ANG-2 | 1,043 | 942 | 92 | 7 | 1 | 0 | 0 | 1 |
| Bank 3 | 2720 | 2535 | 172 | 10 | 2 | 0 | 0 | 1 |
| Benton City Substation |  |  |  |  |  |  |  |  |
| BEC-1 | 887 | 778 | 95 | 11 | 1 | 0 | 0 | 2 |
| BEC-2 | 683 | 652 | 24 | 5 | 1 | 0 | 0 | 1 |
| BEC-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| BEC-4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Bank 1 | 1570 | 1430 | 119 | 16 | 2 | 0 | 0 | 3 |
| Cold Creek Substation |  |  |  |  |  |  |  |  |
| CCR-1 | 60 | 19 | 23 | 2 | 0 | 0 | 14 | 2 |
| Bank 1 | 60 | 19 | 23 | 2 | 0 | 0 | 14 | 2 |
| Ely Substation |  |  |  |  |  |  |  |  |
| ELY-1 | 675 | 658 | 15 | 1 | 1 | 0 | 0 | 0 |
| ELY-2 | 380 | 379 | 1 | 0 | 0 | 0 | 0 | 0 |
| ELY-3 | 1184 | 982 | 173 | 24 | 5 | 0 | 0 | 0 |
| ELY-4 | 943 | 930 | 12 |  | 1 | 0 | 0 | 0 |
| Bank 1 | 3182 | 2949 | 201 | 25 | 7 | 0 | 0 | 0 |
| ELY-5 | 798 | 764 | 32 | 1 | 1 | 0 | 0 | 0 |
| ELY-6 | 927 | 897 | 26 | 2 | 2 | 0 | 0 | 0 |
| ELY-7 | 642 | 557 | 67 | 17 | 1 | 0 | 0 | 0 |
| ELY-8 | 398 | 335 | 47 | 13 | 2 | 0 | 0 | 1 |
| Bank 2 | 2765 | 2553 | 172 | 33 | 6 | 0 | 0 | 1 |
| Gum Street Substation |  |  |  |  |  |  |  |  |
| GUM-1 | 866 | 820 | 27 | 2 | 0 | 0 | 0 | 17 |
| GUM-2 | 522 | 502 | 10 | 0 | 1 | 0 | 0 | 9 |
| GUM-3 | 702 | 684 | 14 | 1 | 0 | 0 | 0 | 3 |
| GUM-4 | 1022 | 901 | 69 | 6 | 0 | 0 | 0 | 46 |
| Bank 1 | 3112 | 2907 | 120 | 9 | 1 | 0 | 0 | 75 |
| Hedges Substation |  |  |  |  |  |  |  |  |
| HED-1 | 188 | 162 | 19 | 1 | 0 | 0 | 0 | 6 |
| HED-2 | 694 | 599 | 36 | 8 | 4 | 0 | 1 | 46 |
| HED-3 | 502 | 451 | 20 | 3 | 1 | 0 | 1 | 26 |
| HED-4 | 1001 | 913 | 41 | 3 | 0 | 1 | 0 | 43 |
| Bank 1 | 2385 | 2125 | 116 | 15 | 5 | 1 | 2 | 121 |


| Table D2Rate Schedule Count by Feeder as of February 2020 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \overline{\mathrm{I}} \\ & \stackrel{1}{0} \end{aligned}$ |  |  |  |  |  |  |  |
| Highlands Substation |  |  |  |  |  |  |  |  |
| HLS-1 | 454 | 442 | 9 | 2 | 1 | 0 | 0 | 0 |
| HLS-2 | 1009 | 905 | 98 | 5 | 1 | 0 | 0 | 0 |
| HLS-3 | 694 | 505 | 166 | 17 | 6 | 0 | 0 | 0 |
| Bank 1 | 2157 | 1852 | 273 | 24 | 8 | 0 | 0 | 0 |
| HLS-4 | 806 | 781 | 18 | 4 | 0 | 0 | 0 | 3 |
| HLS-5 | 1048 | 988 | 48 | 3 | 7 | 0 | 0 | 2 |
| HLS-6 | 778 | 755 | 21 | 2 | 0 | 0 | 0 | 0 |
| Bank 2 | 2632 | 2524 | 87 | 9 | 7 | 0 | 0 | 5 |
| HLS-7 | 924 | 666 | 250 | 8 | 0 | 0 | 0 | 0 |
| HLS-8 | 634 | 611 | 16 | 6 | 1 | 0 | 0 | 0 |
| HLS-9 | 1020 | 984 | 32 | 3 | 0 | 0 | 0 | 1 |
| Bank 3 | 2578 | 2261 | 298 | 17 | 1 | 0 | 0 | 1 |
| Kennewick Substation |  |  |  |  |  |  |  |  |
| KEN-1 | 528 | 402 | 103 | 18 | 5 | 0 | 0 | 0 |
| KEN-2 | 989 | 960 | 26 | 2 | 0 | 0 | 0 | 1 |
| KEN-3 | 1,558 | 1,484 | 64 | 8 | 2 | 0 | 0 | 0 |
| Bank 1 | 3075 | 2846 | 193 | 28 | 7 | 0 | 0 | 1 |
| KEN-4 | 767 | 529 | 209 | 25 | 3 | 0 | 0 | 1 |
| KEN-5 | 797 | 777 | 16 | 2 | 0 | 0 | 0 | 2 |
| KEN-6 | 725 | 424 | 255 | 41 | 5 |  | 0 |  |
| Bank 2 | 2289 | 1730 | 480 | 68 | 8 | 0 | 0 | 3 |
| KEN-7 | 829 | 687 | 125 | 16 | 1 | 0 | 0 | 0 |
| KEN-8 | 1003 | 869 | 83 | 22 | 5 | 0 | 0 | 24 |
| KEN-9 | 579 | 554 | 18 | 5 | 0 | 0 | 0 | 2 |
| Bank 3 | 2411 | 2110 | 226 | 43 | 6 | 0 | 0 | 26 |
| Leslie Road Substation |  |  |  |  |  |  |  |  |
| LES-1 | 1006 | 963 | 24 | 13 | 0 | 0 | 0 | 6 |
| LES-2 | 203 | 158 | 38 | 5 | 2 | 0 | 0 | 0 |
| LES-3 | 257 | 252 | 4 | 1 | 0 | 0 | 0 | 0 |
| LES-4 | 102 | 100 | 1 | 1 | 0 | 0 | 0 | 0 |
| Bank 1 | 1568 | 1473 | 67 | 20 | 2 | 0 | 0 | 6 |
| Orchard View Substation |  |  |  |  |  |  |  |  |
| ORV-1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ORV-2 | 336 | 211 | 106 | 18 | 1 | 0 | 0 | 0 |
| ORV-3 | 874 | 793 | 62 | 12 | 1 | 0 | 0 | 6 |
| ORV-4 | 123 |  | 116 | 5 | 2 | 0 | 0 | 0 |
| Bank 1 | 1333 | 1004 | 284 | 35 | 4 | 0 | 0 | 6 |
| ORV-5 | 220 | 1 | 188 | 26 | 5 | 0 | 0 | 0 |
| ORV-6 | 1,361 | 1,284 | 72 | 5 | 0 | 0 | 0 | 0 |
| ORV-7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ORV-8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Bank 2 | 1581 | 1285 | 260 | 31 | 5 | 0 | 0 | 0 |


| Table D2 <br> Rate Schedule Count by Feeder as of February |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \bar{\pi} \\ & \text { O- } \end{aligned}$ |  |  |  |  |  |  |  |
| Phillips Substation |  |  |  |  |  |  |  |  |
| PHI-6 | 39 | 2 | 8 | 0 | 0 | 0 | 25 | 4 |
| PHI-7 | 347 | 275 | 34 | 8 | 6 | 0 | 0 | 24 |
| Bank 4 | 386 | 277 | 42 | 8 | 6 | 0 | 25 | 28 |
| Prosser Substation |  |  |  |  |  |  |  |  |
| PSR-1 | 73 | 16 | 40 | 9 | 6 | 0 | 0 | 2 |
| PSR-2 | 543 | 428 | 39 | 2 | 2 | 0 | 0 | 72 |
| PSR-3 | 805 | 614 | 157 | 23 | 7 | 0 | 0 | 4 |
| Bank 1 | 1421 | 1058 | 236 | 34 | 15 | 0 | 0 | 78 |
| PSR-4 | 453 | 337 | 53 | 20 | 9 | 0 | 1 | 33 |
| PSR-5 | 192 | 154 | 35 | 3 | 0 | 0 | 0 | 0 |
| PSR-6 | 749 | 663 | 72 | 9 | 3 | 0 | 0 | 2 |
| Bank 2 | 1394 | 1154 | 160 | 32 | 12 | 0 | 1 | 35 |
| Reata Substation |  |  |  |  |  |  |  |  |
| RTA-1 | 463 | 460 | 2 | 0 | 0 | 0 | 1 | 0 |
| RTA-2 | 866 | 794 | 30 | 3 | 0 | 0 | 13 | 26 |
| RTA-3 | 350 | 343 | 2 | 2 | 0 | 0 | 0 | 3 |
| RTA-4 | 339 | 309 | 22 | 3 | 0 | 0 | 2 | 3 |
| Bank 1 | 2018 | 1906 | 56 | 8 | 0 | 0 | 16 | 32 |
| River Front Substation |  |  |  |  |  |  |  |  |
| RVF-1 | 565 | 522 | 29 | 4 | 6 | 0 | 0 | 4 |
| RVF-2 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
| RVF-3 | 773 | 645 | 72 | 7 | 2 | 0 | 1 | 46 |
| Bank 1 | 1341 | 1167 | 101 | 11 | 11 | 0 | 1 | 50 |
| Sunset Road Substation |  |  |  |  |  |  |  |  |
| SSR-1 | 514 | 413 | 43 | 10 | 0 | 0 | 3 | 45 |
| SSR-2 | 573 | 510 | 43 | 4 | 0 | 0 | 0 | 16 |
| SSR-3 | 133 | 107 | 5 | 4 | 2 | 0 | 9 | 6 |
| SSR-4 | 182 | 120 | 29 | 4 | 2 |  | 3 | 24 |
| Bank 1 | 1402 | 1150 | 120 | 22 | 4 | 0 | 15 | 91 |
| Vista Substation |  |  |  |  |  |  |  |  |
| VIS-1 | 136 |  | 108 | 26 | 2 | 0 | 0 | 0 |
| VIS-2 | 670 | 551 | 100 | 19 | 0 | 0 | 0 | 0 |
| VIS-3 | 348 | 317 | 26 | 5 | 0 | 0 | 0 | 0 |
| VIS-4 | 528 | 438 | 66 | 23 | 1 | 0 | 0 | 0 |
| Bank 1 | 1682 | 1306 | 300 | 73 | 3 | 0 | 0 | 0 |
| VIS-5 | 1,047 | 940 | 90 | 17 | 0 | 0 | 0 | 0 |
| VIS-6 | 76 |  | 64 | 10 | 2 | 0 | 0 | 0 |
| VIS-7 | 162 | 19 | 96 | 37 | 10 | 0 | 0 | 0 |
| VIS-8 | 1,133 | 1001 | 119 | 11 | 2 | 0 | 0 | 0 |
| Bank 2 | 2418 | 1960 | 369 | 75 | 14 | 0 | 0 | 0 |
| Zephyr Heights Substation |  |  |  |  |  |  |  |  |
| ZEH-1 | 408 | 397 | 10 | 1 | 0 | 0 | 0 | 0 |
| ZEH-2 | 972 | 948 | 19 | 3 | 0 | 0 | 0 | 2 |
| ZEH-3 | 46 | 21 | 20 | 3 | 0 | 0 | 0 | 2 |
| Bank 1 | 1426 | 1366 | 49 | 7 | 0 | 0 | 0 | 4 |

# [This Page Intentionally Left blank\} [For Two Sided Printing] 






## Appendix E

## Equipment \& Conductor Ratings

# [This Page Intentionally Left blank\} [For Two Sided Printing] 

Table \#E1

| Power Transformer/Regulator Loading Limits ${ }^{(1)}$ | Normal | Emergency |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ambient - Winter@ $0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$ | 136\% | 150\% |  |  |  |
| Ambient - Summer @ $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ | 90\% | 100\% |  |  |  |
|  | (Tapchan | n Normal) | Tapchang | Blocked) |  |
| LTC / Regulators Loading Limits ${ }^{(2)}$ | Normal | Emergency | Normal | Emergency |  |
| Ambient - Winter @ $0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$ | 100\% | 120\% | 136\% | 150\% |  |
| Ambient-Summer @ $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ | 90\% | 100\% | 90\% | 100\% |  |
|  |  |  | Amibient | mperatures |  |
| Substation Bus Temperature Limits | Normal | Emergency | Summer | Winter |  |
| Al and Cu | $70^{\circ} \mathrm{C}$ | $90^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ | $-10^{\circ} \mathrm{C}$ |  |
|  | Conductor | mperature |  | ient Temper | ures |
| OH Conductor Temperature Limits | Normal | Emergency | Summer | Winter | Ext. Winter |
| AAC \& Cu | $75^{\circ} \mathrm{C}$ | $85^{\circ} \mathrm{C}$ | $43^{\circ} \mathrm{C}$ | $16^{\circ} \mathrm{C}$ | $-15^{\circ} \mathrm{C}$ |
| ACSR | $80^{\circ} \mathrm{C}$ | $90^{\circ} \mathrm{C}$ | $43^{\circ} \mathrm{C}$ | $16^{\circ} \mathrm{C}$ | $-10^{\circ} \mathrm{C}$ |
|  | Conducto | mperature | Earth Tem | eratures |  |
| UG Conductor Temperature Limits | Normal | Emergency | Summer | Winter |  |
| XLPE/TR-XLPE insulation | $90^{\circ} \mathrm{C}$ | $90^{\circ} \mathrm{C}$ | $30^{\circ} \mathrm{C}$ | $16^{\circ} \mathrm{C}$ |  |
| EPR insulation | $90^{\circ} \mathrm{C}$ | $90^{\circ} \mathrm{C}$ | $30^{\circ} \mathrm{C}$ | $16^{\circ} \mathrm{C}$ |  |
|  | Sum |  | Win |  |  |
| Reclosers / Circuit Breakers | Normal | Emergency | Normal | Emergency |  |
| Reclosers | 100\% | 100\% | 100\% | 100\% |  |
| Breakers | 100\% | 100\% | 100\% | 100\% |  |
|  | Sum |  | Win |  |  |
| Switches ${ }^{(3)}$ | Normal | Emergency | Normal | Emergency |  |
| General Switch | 100\% | 125\% | 150\% | 175\% |  |
| S\&C Alduti Rupters | 1200 A | 1820 A | 1820 A | 2425 A |  |
| S\&C Disconnects - 600A | 600 A | 930 A | 930 A | 1180 A |  |
| Table \#E6 | 900 A | 1115 A | 1115 A | 1425 A |  |
| S\&C Reg. Bypass Disc. - 1200A | 1200 A | 1820 A | 1820 A | 2425 A |  |
| 115 kV Fuses (SMD-2B) |  |  | Eme | ency |  |
| Ambient - Summer @ $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ |  | Size | Cont | Rating |  |
| Ambient - Winter @ 61 ${ }^{\circ} \mathrm{F}$ ( $16^{\circ} \mathrm{C}$ ) | 1.07 x | se size | $1.07 \times$ | -Rating |  |
| Ambient - Winter @ $0^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right)$ | 1.24 x | se size | $1.24 \times$ C | nt.Rating |  |
| Typical Ambient Temperatures |  | heit |  | uis |  |
| Summer |  |  |  |  |  |
| Summer |  |  |  |  |  |
| Summer |  |  |  |  |  |
| Winter |  |  |  |  |  |
| Winter Extreme |  |  |  |  |  |
| Winter Extreme |  |  |  |  |  |
| Winter Extreme |  |  |  |  |  |

## Notes

(1) - Recommended loading per PSE study.
(2) - Proposed guideline for limiting tap-changing of LTC's and Regulators.
(3) - Switch ratings are current carrying capacity only.

Table \#E2
OVERHEAD CONDUCTOR

| OH <br> Conductor | Ambient Temp. | $\begin{gathered} \hline \text { Norm. } \\ 75^{\circ} \mathrm{C} \end{gathered}$ | Norm. $80^{\circ} \mathrm{C}$ | $\begin{aligned} & \text { Emer. } \\ & 855^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \text { Emer. } \\ & 90^{\circ} \mathrm{C} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 500 Cu | $\begin{aligned} & 43^{\circ} \mathrm{C} \\ & 109^{\circ} \mathrm{F} \end{aligned}$ | 640 |  | 750 |  |
| 336 AAC |  | 400 |  | 465 |  |
| 336 ACSR |  |  | 450 |  | 510 |
| 266.8 ACSR |  |  | 390 |  | 440 |
| 4/0 ACSR |  |  | 305 |  | 350 |
| 3/0 ACSR |  |  | 270 |  | 300 |
| 500 Cu | $\begin{aligned} & 16^{\circ} \mathrm{C} \\ & 61^{\circ} \mathrm{F} \end{aligned}$ | 970 |  | 1040 |  |
| 336 AAC |  | 600 |  | 640 |  |
| 336 ACSR |  |  | 645 |  | 685 |
| 266.8 ACSR |  |  | 555 |  | 590 |
| 4/0 ACSR |  |  | 440 |  | 465 |
| 3/0 ACSR |  |  | 380 |  | 400 |
| 500 Cu | $\begin{gathered} -10^{\circ} \mathrm{C} \\ 14^{\circ} \mathrm{F} \end{gathered}$ | 1158 |  | 1223 |  |
| 336 AAC |  | 720 |  | 760 |  |
| 336 ACSR |  |  | 760 |  | 790 |
| 266.8 ACSR |  |  | 643 |  | 679 |
| 4/0 ACSR |  |  | 513 |  | 541 |
| 3/0 ACSR |  |  | 445 |  | 470 |

Ampacity Values from Benton PUD Standard ED-060 for $43^{\circ} \mathrm{C}$ and $16^{\circ} \mathrm{C}$ Assumes Wind Velocity 2 Ft.Per Sec, crosswise to conductors

Table \#E3
UNDERGROUND CONDUCTOR - IN CONDUIT

|  |  | Summer |  | Winter |  | Per Okonite* |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UG Conductor | $\begin{aligned} & \text { Earth } \\ & \text { Temp. } \end{aligned}$ | Norm. | Emer. | Norm. | Emer. | $\begin{aligned} & \text { Norm. } \\ & 90^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \text { Norm. } \\ & 105^{\circ} \mathrm{C} \end{aligned}$ | $\begin{aligned} & \text { Emer. } \\ & 130^{\circ} \mathrm{C} \end{aligned}$ |
| 1000 A |  | 400 | 500 | 500 | 500 |  |  |  |
| Table \#E6 |  | 400 | 445 | 445 | 445 |  |  |  |
| 1000 A | $30^{\circ} \mathrm{C}$ |  |  |  |  | 488 | 530 | 593 |
| 750 A |  |  |  |  |  | 425 | 461 | 516 |
| 4/0 A |  |  |  |  |  | 214 |  |  |
| 1/0 A |  |  |  |  |  | 146 |  |  |
| \#2A |  |  |  |  |  | 112 |  |  |
| 1000 A | $16^{\circ} \mathrm{C}$ |  |  |  |  | 541 | 577 | 630 |
| 750 A |  |  |  |  |  | 471 | 502 | 548 |
| 4/0 A |  |  |  |  |  | 237 |  |  |
| $1 / 0 \mathrm{~A}$ |  |  |  |  |  | 162 |  |  |
| \#2 A |  |  |  |  |  | 125 |  |  |

*     - Based on 100\% LF, 3 Conductors in 1 Conduit, No derating for other conduits in close proximity

Table \#E4
UNDERGROUND CONDUCTOR - DIRECT BURIED

|  |  | Per Okonite* |  |
| :---: | :---: | :---: | :---: |
| UG Conductor | Earth <br> Temp. | $\begin{gathered} \text { Norm. } \\ 90^{\circ} \mathrm{C} \end{gathered}$ | $\begin{aligned} & \text { Norm. } \\ & 105^{\circ} \mathrm{C} \end{aligned}$ |
| 1000 kcmil | $30^{\circ} \mathrm{C}$ | 740*** | 795*** |
| 4/0 AWG |  | $315^{* *}$ | 340** |
| 1/0 AWG |  | 215** | 230** |
| \#2 AWG |  | 165 | 175 |

*     - Based on $100 \%$ LF, 3 Single Conductors laid on 7-1/2" centers
** - Limited to 200A due to the elbows utilized.
*** Limited to 600A due to the elbows utilized.
Table \#E5
COPPER BUS

|  | Current Rating in Amperes @ Bus Temperatures |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size of Tube | Ambient Temp. | $0^{\circ} \mathrm{C}$ | $10^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $30^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $60^{\circ} \mathrm{C}$ | Norm. $70^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | Emer. $90^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ |
| $1{ }^{\prime \prime}$ | $-10^{\circ} \mathrm{C}$ | 505 | 710 | 860 | 985 | 1090 | 1185 | 1280 | 1360 | 1420 | 1460 | 1490 |
| 1-1/4" |  | 660 | 930 | 1130 | 1290 | 1430 | 1550 | 1660 | 1760 | 1830 | 1900 | 1940 |
| 1-1/2" |  | 750 | 1050 | 1285 | 1460 | 1620 | 1760 | 1890 | 2000 | 2090 | 2170 | 2240 |
| 2" |  | 925 | 1300 | 1585 | 1800 | 1980 | 2140 | 2240 | 2350 | 2430 | 2500 | 2580 |
| $1{ }^{\prime \prime}$ | $40^{\circ} \mathrm{C}$ | --- | --- | --- | --- | --- | 505 | 710 | 860 | 985 | 1090 | 1185 |
| 1-1/4" |  | --- | --- | --- | --- | --- | 660 | 930 | 1130 | 1290 | 1430 | 1550 |
| 1-1/2" |  | --- | --- | --- | --- | --- | 750 | 1050 | 1285 | 1460 | 1620 | 1760 |
| 2" |  | --- | --- | --- | --- | --- | 925 | 1300 | 1585 | 1800 | 1980 | 2140 |

100\% I.A.C.S., Schedule 40
Table \#E6
ALUMINUM BUS

|  | Current Rating in Amperes @ Bus Temperatures |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Size of Tube | Ambient Temp. | $0^{0} \mathrm{C}$ | $10^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $30^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ | $50^{\circ} \mathrm{C}$ | $60^{\circ} \mathrm{C}$ | Norm. $70^{\circ} \mathrm{C}$ | $80^{\circ} \mathrm{C}$ | Emer. $90^{\circ} \mathrm{C}$ | $100^{\circ} \mathrm{C}$ |
| $1{ }^{\prime \prime}$ | $-10^{\circ} \mathrm{C}$ | 394 | 554 | 671 | 768 | 850 | 924 | 990 | 1040 | 1090 | 1120 | 1150 |
| 1-1/2" |  | 585 | 819 | 1002 | 1139 | 1264 | 1373 | 1470 | 1560 | 1640 | 1690 | 1730 |
| 2" |  | 722 | 1014 | 1236 | 1404 | 1560 | 1716 | 1850 | 1980 | 2080 | 2170 | 2240 |
| 3" |  | 1160 | 1640 | 1995 | 2260 | 2540 | 2770 | 2970 | 3140 | 3280 | 3400 | 3500 |
| $1{ }^{\prime \prime}$ | $40^{\circ} \mathrm{C}$ | --- | --- | --- | --- | --- | 394 | 554 | 671 | 768 | 850 | 924 |
| 1-1/2" |  | --- | --- | --- | --- | --- | 585 | 819 | 1002 | 1139 | 1264 | 1373 |
| 2" |  | --- | --- | --- | -- | --- | 722 | 1014 | 1236 | 1404 | 1560 | 1716 |
| 3" |  | --- | --- | --- | --- | --- | 1160 | 1640 | 1995 | 2260 | 2540 | 2770 |

57\% I.A.C.S., 6063-T6, Schedule 40
Ampacity values from Benton PUD Standard ED-060
Assumes partially sheltered locations, Wind Velocity 2 Ft.Per Sec, crosswise to conductors
Table \#E7
Fuse Ratings

| Fuse Type | Summer <br> Normal <br> $\left(40^{\circ} \mathrm{C}\right)$ | Summer <br> Emer. <br> $\left(40^{\circ} \mathrm{C}\right)$ | Winter <br> Normal <br> $\left(16^{\circ} \mathrm{C}\right)$ | Winter <br> Emer. <br> $\left(16^{\circ} \mathrm{C}\right)$ | Winter <br> Normal <br> $\left(-10^{\circ} \mathrm{C}\right)$ | Winter <br> Emer. <br> $\left(-10^{\circ} \mathrm{C}\right)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 1 5 \mathrm { kV } \text { Fuses (SMD-2B) }}$ |  |  |  |  |  |  |
| $\mathbf{1 5 0 \mathrm { E }}$ | 150 | 207 | 161 | 221 | 186 | 257 |
| 125 E | 125 | 181 | 134 | 194 | 155 | 224 |
| 100 E | 100 | 165 | 107 | 177 | 124 | 205 |
| 80 E | 80 | 132 | 86 | 141 | 99 | 164 |

# [This Page Intentionally Left blank\} [For Two Sided Printing] 

## Appendix F

## Substation and Feeder Capability Sheets

# [This Page Intentionally Left blank\} [For Two Sided Printing] 

## Substation and Feeder Capability Sheets

| Substation : ANGUS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bay No: \#1 (Middle Bay) |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Winter |  | Summer |  |
| Equipment | Size / Type | Normal | Emer. | Normal | Emer |
| Power Transformer - DN \#40 (BPA Bk \#1) | 12/16/20 MVA @ $55^{\circ}$ (1037A) | 1410 | 1555 | 933 | 1037 |
|  | 13.44/17.92/22.4 MVA @65 ${ }^{\circ}$ |  |  |  |  |
| Regulator - DN \#47 A17V (Siemens SFR) | 2000/2667 kVA (1235A) | 1235 | 1482 | 1111 | 1235 |
|  |  |  |  |  |  |
| 115 kV (rated by eqiuvalent $12 \mathrm{kV} \mathrm{Amps)}$ |  |  |  |  |  |
| Circuit Switcher, BC720 | 1200 amp (S\&C 2030) | 11066 | 11066 | 11066 | 11066 |
|  |  |  |  |  |  |
| 12 kV |  |  |  |  |  |
| Bus - Xfmr to Reg | 1-1/4" Cu | 1760 | 1900 | 1130 | 1430 |
| Bus/OH - Reg to Dist. Bay | 1272 ACSR (verify) | 1516 | 1584 | 960 | 1104 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | Min Trip = 1920A | 1536 | 1728 | 1536 | 1728 |
| Regulator Bypass Switches | 1200A | 1800 | 2100 | 1200 | 1500 |
| Bus Disconnect Switch | 1200A | 1800 | 2100 | 1200 | 1500 |
|  |  |  |  |  |  |
| Bay Rating |  | 1235 | 1482 | 933 | 1037 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Feeders - A3B, A4B |  |  |  |  |  |
| Circuit Breaker | Westinghouse $=1200 \mathrm{~A}$ | 1200 | 1200 | 1200 | 1200 |
| Disconnect Swt | 600A | 900 | 1050 | 600 | 750 |
| UG Feeder | 1000 A XLP | 530 | 530 | 530 | 530 |
| OH Feeder | 3/0 ACSR (win. ambient $=-10^{\circ} \mathrm{C}$ ) | 445 | 470 | 270 | 300 |
| OH Feeder | $3 / 0$ ACSR (win. ambient $=16^{\circ} \mathrm{C}$ ) | 380 | 400 | 270 | 300 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | 720A = min trip | 576 | 648 | 576 | 648 |
|  |  |  |  |  |  |
| Feeder Rating |  | 380 | 400 | 270 | 300 |
|  |  |  |  |  |  |
| Feeders - A5B |  |  |  |  |  |
| Circuit Breaker | Westinghouse $=800 \mathrm{~A}$ | 800 | 800 | 800 | 800 |
| Disconnect Swt | 600A | 900 | 1050 | 600 | 750 |
| UG Feeder | 1000 A XLP | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | 720A = min trip | 576 | 648 | 576 | 648 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
| Notes: |  |  |  |  |  |
| Ratings use KV=12.47 => 12.47*1.732=21.6 |  |  |  |  |  |
| Regulator - recommend disable tapchanging if exceed ratings |  |  |  |  |  |
| Last Updated: 6/26/2012 by EAP |  |  |  |  |  |
|  |  |  |  |  |  |

## Substation and Feeder Capability Sheets



## Substation and Feeder Capability Sheets



## Substation and Feeder Capability Sheets

| Substation : BENTON CITY |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bay No: 1 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Winter |  | Summer |  |
| Equipment | Size / Type | Normal | Emer. | Normal | Emer |
| Power Transformer with LTC - DN \#67 | 15/20/25 MVA @55 deg (1296A) | 1763 | 1944 | 1167 | 1296 |
|  | 16.8/22.4/28 MVA @65 |  |  |  |  |
| LTC - Reinhausen RMV-II-1500 |  | 1500 | 1800 | 1350 | 1500 |
|  |  |  |  |  |  |
| 115 kV (rated by eqiuvalent $12 \mathrm{kV} \mathrm{Amps)}$ |  |  |  |  |  |
| Circuit Switcher - BC 1403 | 1200A (S\&C Model 2010) | 11066 | 11066 | 11066 | 11066 |
|  |  |  |  |  |  |
| 12 kV |  |  |  |  |  |
| Outdoor Bus (transformer - metalclad) <br> Switch | 1-1/4" Cu (1130A @ 30 ${ }^{\circ} \mathrm{C}$ rise) | 1760 | 1900 | 1130 | 1430 |
|  | 2000A (ABB) | 2000 | 2000 | 2000 | 2000 |
| Main Bus - Metalclad | States Manufacturing - 2000A | 2000 | 2000 | 2000 | 2000 |
|  |  |  |  |  |  |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | Min Trip = 1795A | 1436 | 1616 | 1436 | 1616 |
|  |  |  |  |  |  |
| Bay Rating |  | 1436 | 1616 | 1130 | 1296 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Feeders - B1B |  |  |  |  |  |
|  |  |  |  |  |  |
| Circuit Breaker <br> UG Feeder | 1200A (ABB) | 1200 | 1200 | 1200 | 1200 |
|  | 1000 A EPR-J | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | Min Trip = 720A | 576 | 648 | 576 | 648 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
|  |  |  |  |  |  |
| Feeders - B2B |  |  |  |  |  |
|  |  |  |  |  |  |
| Circuit Breaker | 1200A (ABB) | 1200 | 1200 | 1200 | 1200 |
| UG Feeder | 1000 A EPR-J | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | Min Trip = 720A | 576 | 648 | 576 | 648 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
|  |  |  |  |  |  |
| Feeders - B3B |  |  |  |  |  |
|  |  |  |  |  |  |
| Circuit Breaker | 1200A (ABB) | 1200 | 1200 | 1200 | 1200 |
| UG Feeder | 1000 A EPR-J | 530 | 530 | 530 | 530 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | Min Trip = 720A | 576 | 648 | 576 | 648 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 530 | 530 |
|  |  |  |  |  |  |
| Feeders - B4B |  |  |  |  |  |
|  |  |  |  |  |  |
| Circuit Breaker | 1200A (ABB) | 1200 | 1200 | 1200 | 1200 |
| UG Feeder | 1000 A EPR-J | 530 | 530 | 530 | 530 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | Min Trip = 720A | 576 | 648 | 576 | 648 |
| Feeder Rating |  | 530 | 530 | 530 | 530 |
|  |  |  |  |  |  |
| Note: B3B and B4B are risers built up on the get-away pole, but do not have any overhead distribution yet. |  |  |  |  |  |
|  |  |  |  |  |  |
| Last Updated: 1/23/2020 by DAB |  |  |  |  |  |

## Substation and Feeder Capability Sheets

| Substation : Cold Creek |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bay No: \#1 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Winter |  | Summer |  |
| Equipment | Size / Type | Normal | Emer. | Normal | Emer |
| Power Transformer - DN \#26 | 8.4/10.5 @ $65^{\circ}$ (486A) | 661 | 729 | 438 | 486 |
| Manufacture: HK Porter | 7.5/9.375 MVA @ $55^{\circ}$ (434A) |  |  |  |  |
| Conenction type: D-Y | 115/12.47kV |  |  |  |  |
|  |  |  |  |  |  |
| Regulator - C16V (DN \#166,67,168) | 750 kVA Regulation | 367 | 440 | 330 | 367 |
|  |  |  |  |  |  |
| 115 kV (rated by eqiuvalent 12.47kV Amps) |  |  |  |  |  |
| Switch, B923 | Switch (600A) | 8300 | 9683 | 5533 | 6917 |
| Switch, B925 | Switch (600A) | 8300 | 9683 | 5533 | 6917 |
| Bus (1995A Per Phase) | $3^{\prime \prime}$ IPS AL | 25537 | 27597 | 18398 | 20790 |
| Bus (1236A Per Phase) | 2" IPS AL | 15821 | 17098 | 11399 | 12880 |
| Fuse, 65E | S\&C SM-2B, 65E (65A) | 641 | 1056 | 599 | 987 |
|  |  |  |  |  |  |
| 12.47 kV |  |  |  |  |  |
| Bus - Xfmr to Reg by-pass switches | 2" IPS AL | 1716 | 1854 | 1236 | 1397 |
| Reg by-pass switches | S\&C 1200A | 1200 | 1200 | 1200 | 1200 |
| Bus - Reg by-pass switches to main | $1^{\prime \prime}$ IPS AL | 1066 | 1152 | 768 | 868 |
| Bus - Main | $1{ }^{1 / \mathrm{IPS}}$ AL | 1066 | 1152 | 768 | 868 |
|  |  |  |  |  |  |
| Bay Rating |  | 367 | 440 | 330 | 367 |
| Notes: |  |  |  |  |  |
| equivelant ratings obtained using: |  |  |  |  |  |
| Rated current * $115 \mathrm{kV} / 12.47 \mathrm{kV}$ |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Feeder - C1R |  |  |  |  |  |
| Recloser | Cooper VSA-16 | 800 | 800 | 800 | 800 |
| UG Getaway | 1000 EPRJ | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
|  |  |  |  |  |  |

## Substation and Feeder Capability Sheets

| Substation : ELY |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bay No: \#1 |  |  |  |  |  |
|  |  | Winter |  | Summer |  |
| Equipment | Size / Type | Normal | Emer. | Normal | Emer |
| Power Transformer - DN \#30 | 15/20/25 MVA @65 ${ }^{\circ}$ (1157A) | 1573 | 1736 | 1041 | 1157 |
| LTC - Reinhausen RMV-II-1500 | 15/20/25 MVA @55 | 1296 | 1555 | 1166 | 1296 |
| 115 kV (rated by eqiuvalent $12 \mathrm{kV} \mathrm{Amps)}$ |  |  |  |  |  |
| Circuit Switcher - BC360 | 1200A (S\&C 2010) | 11064 | 11064 | 11064 | 11064 |
| 12 kV |  |  |  |  |  |
| Bus - Xfmr to Swt. | 1-1/4" Cu | 1760 | 1900 | '1130' | 1430 |
| Switch - S359A (HK Porter) | 1200 Amp | 1800 | 2100 | 1200 | 1500 |
| Metal Clad Main Bus | 1200 Amp (1/2" $\times 3$ " Cu ) | 1600 | 1800 | 1200 | 1400 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, E=90\%) | Min. Trip = 1805A | 1444 | 1625 | 1444 | 1625 |
| Bay Rating |  | 1296 | 1555 | 1041 | 1157 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Feeders - E1B, E2B, E4B |  |  |  |  |  |
| Circuit Breaker | ABB AMVAC | 1200 | 1200 | 1200 | 1200 |
| UG Getaway (\# ckt) | 1000 A XLP | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, E=90\%) | Min Trip $=720$ | 576 | 648 | 576 | 648 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
|  |  |  |  |  |  |
| Feeders - E3B |  |  |  |  |  |
| Circuit Breaker | ABB AMVAC | 1200 | 1200 | 1200 | 1200 |
| UG Getaway (\# ckt) | 1000 EPRJ | 530 | 530 | 530 | 530 |
| OH Feeder | 556.5 AAC | 840 | 890 | 540 | 640 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, E=90\%) | Min Trip = 720 | 576 | 648 | 576 | 648 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 530 | 530 |
|  |  |  |  |  |  |
| Notes: |  |  |  |  |  |
| Ratings use KV=12.47 |  |  |  |  |  |
| LTC - recommend disable tapchanging if exceed ratings |  |  |  |  |  |
| Last Updated: 5/16/2022 by DAB |  |  |  |  |  |
|  |  |  |  |  |  |

## Substation and Feeder Capability Sheets



## Substation and Feeder Capability Sheets

| Substation : GUM STREET |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bay No: |  |  |  |  |  |
|  |  | Winter |  | Summer |  |
| Equipment | Size / Type | Normal | Emer. | Normal | Emer |
| Power Transformer - DN \# 55 | 16.8/22.4/28 MVA @650 (1296A) | 1762 | 1944 | 1166 | 1296 |
|  | 15/20/25 MVA @ $55^{\circ}$ |  |  |  |  |
| LTC - Reinhausen RMV-II-1500-15 | 1500 Amp | 1296 | 1500 | 1166 | 1296 |
| 115 kV (rated by eqiuvalent 12 kV Amps) |  |  |  |  |  |
| Circuit Switcher - BC 129 | 1200A (S\&C 2010) | 11064 | 11064 | 11064 | 11064 |
| 12 kV |  |  |  |  |  |
| Bus - Xfmr to Switch/Metalclad | 1-1/4" Cu | 1760 | 1900 | '1130' | 1430 |
| Bus Switch | 1200A | 1800 | 2100 | 1200 | 1500 |
| Main Bus - Metalclad | 2000A | 2000 | 2000 | 2000 | 2000 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, E=90\%) | Min Trip = 1840 A | 1472 | 1656 | 1472 | 1656 |
| Bay Rating |  | 1296 | 1500 | 1166 | 1296 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Feeders - G1,G2,G3,G4 |  |  |  |  |  |
| Circuit Breaker | FSV-500 | 1200 | 1200 | 1200 | 1200 |
| UG Getaway (1 ckt) | 1000 A XLP | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, E=90\%) | Min Trip $=720 \mathrm{~A}$ | 576 | 648 | 576 | 648 |
| Aux Bus Tie Switch | 600 Amp | 600 | 600 | 600 | 600 |
| Aux Bus - cable tie | 1000 A XLP | 530 | 530 | 530 | 530 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Notes: |  |  |  |  |  |
| LTC - Maximum rating by Reinhausen $=1500 \mathrm{~A}$ |  |  |  |  |  |
| Regulator - recommend disable tapchanging if exceed ratings |  |  |  |  |  |
| Last Updated: 5/4/2021 by MDC |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

## Substation and Feeder Capability Sheets



## Substation and Feeder Capability Sheets

| Substation : HIGHLANDS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bay No: \#1 |  |  |  |  |  |
|  |  | Winter (Amps) |  | Summer (Amps) |  |
| Equipment | Size / Type | Normal | Emer. | Normal | Emer |
| Power Transformer - DN \#36 | 12/16/20 MVA @55 deg (927A) | 1261 | 1372 | 834 | 927 |
| Regulator - H17V | 2000/2667 KVA | 1235 | 1482 | 1112 | 1235 |
| 115 kV (rated in eqiuvalent $12 \mathrm{kV} \mathrm{Amps)}$ |  |  |  |  |  |
| Circuit Switcher BC728 | S\&C 2030 (1200 Amp) | 11064 | 11064 | 11064 | 11064 |
| 12 kV |  |  |  |  |  |
| Bus - Xfmr to Reg | 1-1/4" $\mathrm{Cu}\left(1130 \mathrm{~A} @ 30^{\circ} \mathrm{C}\right.$ rise) | 1760 | 1900 | 1130 | 1430 |
| Reg by-pass switches | 1200A (S\&C) | 1800 | 2100 | 1200 | 1500 |
| Bus - Reg to Metalclad | 1192 AAC | 1430 | 1430 | 980 | 980 |
| Metal Clad Main Bus | 1200A | 1600 | 1800 | 1200 | 1400 |
| Bay Rating |  | 1235 | 1372 | 834 | 927 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Feeders - HI1B |  |  |  |  |  |
|  |  |  |  |  |  |
| Circuit Breaker | 1200A (G.E.) | 1200 | 1200 | 1200 | 1200 |
| UG Feeder | 1000 A XLP | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | 720A = min trip | 576 | 648 | 576 | 648 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
|  |  |  |  |  |  |
| Feeders - HI2B |  |  |  |  |  |
|  |  |  |  |  |  |
| Circuit Breaker | 1200A (G.E.) | 1200 | 1200 | 1200 | 1200 |
| UG Feeder | 1000 A XLP | 530 | 530 | 530 | 530 |
| OH Feeder | 556.5 AAC | 840 | 890 | 540 | 640 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | 720A = min trip | 576 | 648 | 576 | 648 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 530 | 530 |
|  |  |  |  |  |  |
| Feeders - HI3B |  |  |  |  |  |
|  |  |  |  |  |  |
| Circuit Breaker | 1200A (G.E.) | 1200 | 1200 | 1200 | 1200 |
| UG Feeder | 1000 EPRJ | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | 720A = min trip | 576 | 648 | 576 | 648 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Notes: |  |  |  |  |  |
| Ratings use KV=12.47 => 12.47*1.732=21.6 |  |  |  |  |  |
| Last Updated: 1/17/2018 by DAB |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

## Substation and Feeder Capability Sheets

| Substation : HIGHLANDS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bay No: \#2 |  |  |  |  |  |
|  |  | Winter (Amps) |  | Summer (Amps) |  |
| Equipment | Size / Type | Normal | Emer. | Normal | Emer |
| Power Transformer - DN \#37 | 12/16/20 MVA @ 55 deg (927A) | 1261 | 1372 | 834 | 927 |
| Regulator - H18V | 2000/2667 KVA | 1235 | 1482 | 1112 | 1235 |
| 115 kV (rated in eqiuvalent $12 \mathrm{kV} \mathrm{Amps)}$ |  |  |  |  |  |
| Fuse 125E, SMD-2B |  | 1430 | 2070 | 1152 | 1670 |
| 12 kV |  |  |  |  |  |
| Bus - Xfmr to Reg | 1-1/4" $\mathrm{Cu}\left(1130 \mathrm{~A} @ 30^{\circ} \mathrm{C}\right.$ rise) | 1760 | 1900 | 1130 | 1430 |
| Reg by-pass switches | 1200A (S\&C) | 1800 | 2100 | 1200 | 1500 |
| Bus - Reg to Metalclad | 1192 AAC | 1430 | 1430 | 980 | 980 |
| Metal Clad Main Bus | 2000 | 1600 | 1800 | 1200 | 1400 |
| Bay Rating |  | 1235 | 1372 | 834 | 927 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Feeders - HI4B |  |  |  |  |  |
|  |  |  |  |  |  |
| Circuit Breaker | 1200A (ABB) | 1200 | 1200 | 1200 | 1200 |
| UG Feeder | 1000 KCM EPR | 530 | 530 | 530 | 530 |
| OH Feeder | 3/0 ACSR (win. ambient=-10 ${ }^{\circ} \mathrm{C}$ ) | 445 | 470 | 270 | 300 |
| OH Feeder | $3 / 0$ ACSR (win. ambient $=16^{\circ} \mathrm{C}$ ) | 380 | 400 | 270 | 300 |
| Phase Relay Setting ( $\mathrm{N}=80 \%, \mathrm{E}=90 \%$ ) | 720A $=$ min trip | 546 | 648 | 576 | 648 |
|  |  |  |  |  |  |
| Feeder Rating |  | 380 | 400 | 270 | 300 |
|  |  |  |  |  |  |
| Feeders - HI5B |  |  |  |  |  |
|  |  |  |  |  |  |
| Circuit Breaker | 1200A (ABB) | 1200 | 1200 | 1200 | 1200 |
| UG Feeder | 1000 EPRJ | 530 | 530 | 530 | 530 |
| OH Feeder | 556.5 AAC | 840 | 890 | 540 | 640 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, E=90\%) | 720A = min trip | 546 | 648 | 576 | 648 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 530 | 530 |
| Feeders - HI6B |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Circuit Breaker | 1200A (ABB) | 1200 | 1200 | 1200 | 1200 |
| UG Feeder | 1000 EPRJ | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | 720A $=$ min trip | 546 | 648 | 576 | 648 |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
|  |  |  |  |  |  |
| Notes: |  |  |  |  |  |
| Ratings use $\mathrm{KV}=12.47$ => 12.47*1.732=21.6 |  |  |  |  |  |
| Last Updated: 8/11/2014 by ECE |  |  |  |  |  |

## Substation and Feeder Capability Sheets



## Substation and Feeder Capability Sheets

| Substation : KENNEWICK |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bay No: \#1 |  |  |  |  |  |
|  |  | Winter |  | Summer |  |
| Equipment | Size / Type | Normal | Emer. | Normal | Emer |
| Power Transformer - DN \#56 | 15/20/25 MVA @65 ${ }^{\circ}$ (1157A) | 1573 | 1736 | 1041 | 1155 |
| Regulator - DN \#62 K16V | 2000/2667 kVA (1235A) | 1235 | 1482 | 1111 | 1235 |
| 115 kV (rated by eqiuvalent $12 \mathrm{kV} \mathrm{Amps)}$ |  |  |  |  |  |
| Circuit Switcher BC709 | S\&C 2030 (1200 Amp) | 11064 | 11064 | 11064 | 11064 |
| 12 kV |  |  |  |  |  |
| Bus - Xfmr to OCB | 1" Cu | 1360 | 1460 | 860 | 1090 |
| OCB - Disconnects | 1200 Amp | 1800 | 2100 | 1200 | 1800 |
| Bus/UG - 3-1000 A XLP / phase | $\mathrm{S}=3 \times 376 \mathrm{~A}, \mathrm{~W}=3 \times 416 \mathrm{~A}$ | 1248 | 1248 | 1128 | 1128 |
| Bus @ Regulator | 1-1/4" Cu | 1760 | 1900 | 1130 | 1430 |
| Bus - 12 kV Main | 2" AI | 1980 | 2170 | 1236 | 1560 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | Min Trip = 1920A | 1536 | 1728 | 1536 | 1728 |
| Bay Rating |  | 1235 | 1248 | 860 | 1090 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Feeders - K1R,K2R,K3R |  |  |  |  |  |
| Bus | 1"AI | 1040 | 1120 | 671 | 850 |
| Jumper to Recloser | 500 Cu | 970 | 1040 | 640 | 750 |
| Circuit Recloser | VSA = 800A | 800 | 800 | 800 | 800 |
| Disconnect Swt | 600A | 930 | 1180 | 600 | 930 |
| UG Feeder | 1000 A XLP | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, E=90\%) | 800A = min trip | 640 | 720 | 640 | 720 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Notes: |  |  |  |  |  |
| Ratings use KV=12.47 => 12.47*1.732=21.6 |  |  |  |  |  |
| Regulator - recommend disable tapchanging if exceed ratings |  |  |  |  |  |
| Last Updated: 6/26/2012 by EAP |  |  |  |  |  |

## Substation and Feeder Capability Sheets

| Substation : KENNEWICK |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bay No: \#2 |  |  |  |  |  |
|  |  | Winter |  | Summer |  |
| Equipment | Size / Type | Normal | Emer. | Normal | Emer |
| Power Transformer - DN \#33 | 16.8/22.4/28 MVA @65 ${ }^{\circ}$ (1296A) | 1763 | 1944 | 1166 | 1296 |
|  | 15/20/25 MVA @ $55^{\circ}$ (1037A) |  |  |  |  |
| Regulator - DN \#63 K17V | 2000/2667 kVA (1235A) | 1235 | 1482 | 1111 | 1235 |
| 115 kV (rated by eqiuvalent $12 \mathrm{kV} \mathrm{Amps)}$ |  |  |  |  |  |
| Circuit Switcher - BC 711 | 1200 Amp (S\&C 2030) | 11064 | 11064 | 11064 | 11064 |
| 12 kV |  |  |  |  |  |
| Bus - Xfmr to OCB | 1" Cu (verify) | 1360 | 1460 | '860' | '1090' |
| Bus - Xfmr to OCB | 1-1/2" Al (verify) | 1460 | 1560 | '1002' | 1264 |
| OCB - S718B | 1200 Amp | 1200 | 1200 | 1200 | 1200 |
| OCB - Disconnects | 1200 Amp | 1800 | 2100 | 1200 | 1800 |
| Bus/UG - 3-1000 A XLP / phase | S=3x376A, W=3x416A | 1248 | 1248 | 1128 | 1128 |
| Bus @ Regulator | 1-1/4" Cu | 1760 | 1900 | 1130 | 1430 |
| Bus - 12 kV Main | 2" Al | 1980 | 2170 | 1236 | 1560 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, E=90\%) | Min Trip = 1920A | 1536 | 1728 | 1536 | 1728 |
|  |  |  |  |  |  |
| Bay Rating |  | 1200 | 1200 | 1111 | 1128 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Feeders - K4R,K5R,K6R |  |  |  |  |  |
| Bus | 1"AI | 1040 | 1120 | 671 | 850 |
| Jumper to Recloser | 500 Cu | 970 | 1040 | 640 | 750 |
| Circuit Breaker | VSA = 800A | 800 | 800 | 800 | 800 |
| Disconnect Swt | 600 A | 930 | 1180 | 600 | 930 |
| UG Feeder | 1000 A XLP | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, E=90\%) | 800A = min trip | 640 | 720 | 640 | 720 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
|  |  |  |  |  |  |
| Notes: |  |  |  |  |  |
| Ratings use KV=12.47 => 12.47*1.732=21.6 |  |  |  |  |  |
| Regulator - recommend disable tapchanging if exceed ratings |  |  |  |  |  |
| Last Updated: 6/26/2012 by EAP |  |  |  |  |  |

## Substation and Feeder Capability Sheets

| Substation : KENNEWICK |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bay No: \#3 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Winter |  | Summer |  |
| Equipment | Size / Type | Normal | Emer. | Normal | Emer |
| Power Transformer - DN \#35 | 12/16/20 MVA @55 | 1410 | 1555 | 933 | 1037 |
|  | 13.44/17.92/22.4 MVA @65 ${ }^{\circ}$ |  |  |  |  |
| Regulator - DN \#63 (K18V) | 2000/2667 kVA (1235A) | 1235 | 1482 | 1111 | 1235 |
|  |  |  |  |  |  |
| 115 kV (rated by eqiuvalent $12 \mathrm{kV} \mathrm{Amps)}$ |  |  |  |  |  |
| Circuit Switcher - BC 712 | 1200 Amp (S\&C 2030) | 11064 | 11064 | 11064 | 11064 |
| $12 \mathrm{kV}$ |  |  |  |  |  |
|  |  |  |  |  |  |
| Bus - Xfmr to OCB | 2"Al | 1980 | 2170 | 1236 | 1560 |
| Bus disconnect - S719A | 1200A | 1800 | 2100 | 1200 | 1800 |
| Bus/UG - 3-1000 A XLP / phase | S=3x376A, W=3x416A | 1248 | 1248 | 1128 | 1128 |
| Bus @ Regulator | 1-1/4" Cu | 1760 | 1900 | 1130 | 1430 |
| Bus - 12 kV Main | 2" Al | 1980 | 2170 | 1236 | 1560 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | MT=204A @ $115 \mathrm{kV}(1880 \mathrm{~A}$ @ 12 kV ) | 1504 | 1692 | 1504 | 1692 |
|  |  |  |  |  |  |
| Bay Rating |  | 1235 | 1248 | 933 | 1037 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Feeders - K7R |  |  |  |  |  |
| Bus | 1"Al | 1040 | 1120 | 671 | 850 |
| Jumper to Recloser | 500 Cu | 970 | 1040 | 640 | 750 |
| Circuit Breaker | VSA = 800A | 800 | 800 | 800 | 800 |
| Disconnect Swt | 600 A | 930 | 1180 | 600 | 930 |
| UG Feeder | 1000 A XLP | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, E=90\%) | 800A = min trip | 640 | 720 | 640 | 720 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
|  |  |  |  |  |  |
| Feeders - K8R |  |  |  |  |  |
| Bus | 1"Al | 1040 | 1120 | 671 | 850 |
| Jumper to Recloser | 500 Cu | 970 | 1040 | 640 | 750 |
| Circuit Breaker | VSA $=800 \mathrm{~A}$ | 800 | 800 | 800 | 800 |
| Disconnect Swt | 600 A | 930 | 1180 | 600 | 930 |
| UG Feeder | 1000 EPRJ | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | 800A = min trip | 640 | 720 | 640 | 720 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
| Feeders - K9R |  |  |  |  |  |
|  | Feeders - K9R |  |  |  |  |
| Bus | 1"Al | 1040 | 1120 | 671 | 850 |
| Jumper to Recloser | 500 Cu | 970 | 1040 | 640 | 750 |
| Circuit Breaker | VSA = 800A | 800 | 800 | 800 | 800 |
| Disconnect Swt | 600 A | 930 | 1180 | 600 | 930 |
| UG Feeder | 1000 A XLP | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | 800A = min trip | 640 | 720 | 640 | 720 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
|  |  |  |  |  |  |
| Notes: |  |  |  |  |  |
| Ratings use KV=12.47 => 12.47*1.732=21.6 |  |  |  |  |  |
| Regulator - recommend disable tapchanging if exceed ratings |  |  |  |  |  |
| Last Updated: 6/26/2012 by EAP |  |  |  |  |  |


| Substation : LESLIE ROAD |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bay No: \#1 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  | Winter (Amps) |  | Summer (Amps) |  |
| Equipment | Size / Type | Normal | Emer. | Normal | Emer |
| Power Transformer with LTC - DN \#64 | 15/20/25 MVA @55 deg (1296A) | 1763 | 1944 | 1167 | 1296 |
|  | 16.8/22.4/28 MVA @65 |  |  |  |  |
| LTC - Reinhausen RMV-II-1500 |  | 1500 | 1800 | 1350 | 1500 |
|  |  |  |  |  |  |
| 115 kV (rated in eqiuvalent 12 kV Amps ) |  |  |  |  |  |
| Circuit Switcher - BC 1374 | 1200A (S\&C Model 2010) | 11066 | 11066 | 11066 | 11066 |
|  |  |  |  |  |  |
| 12 kV |  |  |  |  |  |
| Outdoor Bus (transformer - metalclad) <br> Switch | 3" AL (2260A @ 30 ${ }^{\circ} \mathrm{C}$ rise) | 3140 | 3400 | 1995 | 2540 |
|  | 2000A (ABB) | 2000 | 2000 | 2000 | 2000 |
| Main Bus - Metalclad | AZZ - 2000A | 2000 | 2000 | 2000 | 2000 |
|  |  |  |  |  |  |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | Min Trip = 2160A | 1728 | 1944 | 1728 | 1944 |
|  |  |  |  |  |  |
| Bay Rating |  | 1500 | 1800 | 1167 | 1296 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Feeders - L1B |  |  |  |  |  |
| - |  |  |  |  |  |
| Circuit Breaker | 1200A (ABB) | 1200 | 1200 | 1200 | 1200 |
| UG Feeder | 1000 A EPR-J | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | Min Trip = 720A | 576 | 648 | 576 | 648 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
|  |  |  |  |  |  |
| Feeders - L2B |  |  |  |  |  |
|  |  |  |  |  |  |
| Circuit Breaker | 1200A (ABB) | 1200 | 1200 | 1200 | 1200 |
| UG Feeder | 1000 A XLP | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | Min Trip = 720A | 576 | 648 | 576 | 648 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
|  |  |  |  |  |  |
| Feeders - L3B |  |  |  |  |  |
|  |  |  |  |  |  |
| Circuit Breaker | 1200A (ABB) | 1200 | 1200 | 1200 | 1200 |
| UG Feeder | 1000 A EPR-J | 530 | 530 | 530 | 530 |
| OH Feeder | 336.4 AAC | 600 | 640 | 400 | 465 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | Min Trip = 720A | 576 | 648 | 576 | 648 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 400 | 465 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| Feeders - L4B |  |  |  |  |  |
| Circuit Breaker | 1200A (ABB) | 1200 | 1200 | 1200 | 1200 |
| UG Feeder | 1000 A EPR-J | 530 | 530 | 530 | 530 |
| OH Feeder | 556.5 AAC | 840 | 890 | 540 | 640 |
| Phase Relay Setting ( $\mathrm{N}=80 \%$, $\mathrm{E}=90 \%$ ) | Min Trip = 720A | 576 | 648 | 576 | 648 |
|  |  |  |  |  |  |
| Feeder Rating |  | 530 | 530 | 530 | 530 |
|  |  |  |  |  |  |
| Notes: |  |  |  |  |  |
| Ratings use $\mathrm{KV}=12.47$ => $12.47 * 1.732=21.6$ <br> Last Updated: $1 / 23 / 2020$ by DAB |  |  |  |  |  |
|  |  |  |  |  |  |

## Substation and Feeder Capability Sheets



## Substation and Feeder Capability Sheets



Substation and Feeder Capability Sheets


## Substation and Feeder Capability Sheets



## Substation and Feeder Capability Sheets



## Substation and Feeder Capability Sheets



## Substation and Feeder Capability Sheets



## Substation and Feeder Capability Sheets



## Substation and Feeder Capability Sheets



## Substation and Feeder Capability Sheets



## Substation and Feeder Capability Sheets



## Substation and Feeder Capability Sheets



## Appendix G

## Capital Planning Strategic Planning Discussion, June 13, 2017

# [This Page Intentionally Left blank\} [For Two Sided Printing] 

## CAPITAL PLANNING STRATEGIC DISCUSSION June 13, 2017



## The Future by Design 10-Step Action Plan for Transition



Peliable Public
Power Prowider

## Agenda

## Discuss strategy for ensuring the District's Electrical System is able to:

1) Meet continued incremental customer growth > Substations and Distribution Feeders
$\checkmark$ Proximity to high growth areas
$\checkmark$ Spacial Load Density
$\checkmark$ Available capacity
2) Accommodate new large load interconnections and associated revenue growth opportunities
> Identify "Spot Load" Zones
$>$ Fast Track (<1 year) vs. Longer Term (>2 to 3 years)
$\checkmark$ BPA Process Time ( $\approx 3$ years)
3) Meet customer expectations for a " $21^{\text {st }}$ Century Power Grid" > Flexible/Reliable and Always On
$>$ Smart Grid is Happening @ Benton PUD

## Capital Expense History \& Forecast



## 2017 Net Capital Expense



* Capital is net of $\$ 1.1$ million of capital contributions


## Meet continued incremental customer growth

## Customer Growth



Table 15 - Total System History and Retail Load Forecast

## Line Extension Policy



## Customer Services - Capital Expense History



## Substations

## \& <br> Distribution Feeders



## Substation - Service Areas



## Substations - Plans for High Growth Areas



## Electrical Load Density (Summer)



## Electrical Load Density (Winter)



## Substation Transformers - Aged Equipment

2017 (58 Units)


## Spare Transformer Inventory



## Substation Transformer Summer Loading



## Substation Transformer Winter Loading



Substation Transformer Bay

## Substation - Capital Expense History



## Substation Improvements



Substation Transformer Improvements Circuit Switcher Additions Capacitor Bank Additions


Control House Additions Switchgear Upgrades

## Substation Improvements

New Technology


## Substation Projects \& Budgets

|  | Year (amounts in constant year dollars) |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Project Description |  |  |  |  |

## Accommodate new large load interconnections and associated revenue growth opportunities

## New Large Loads - Development Areas




## Development Areas <br> Feeder Penetration \& Available Capacity



## Feeder Capacity Reserves - Summer 2015



Feeder Id

## Feeder Capacity Reserves - Winter 2015/2016



- Feeder Id


## Distribution Feeders - Capital Expense History



## New Large Load Response Capabilities

## < 1 Year

$\square$ Exploit Feeder Capacity Reserves (0 to 10 MW Loads)
$>0$ to 5 MW Individual Spot Loads
$>5$ to 10 MW Aggregate Spot Loads on One Property
$>$ Short term "risk" of reduced operational flexibility
$>$ Build back reserves in subsequent years
> Identify "spot load" zones based on specific feeder capacity \& available properties
$\square$ Exploit Substation Capacity Reserves (0 to 15 MW Loads)
> Phillips, Riverfront and Zephyr Heights Substations (15 MW Load Level)

* > 2 to 3 Years
$\square$ Collaborate to Develop Loads Near Future Substation Sites
> Light and Heavy Industrial Zoning


# Meet customer expectations for a "21st Century Power Grid 

## Distribution Utility - Smart Grid



## Smart Grid Behaviors

$\checkmark$ Enable Active Participation by Consumers
$\checkmark$ Accommodate all Generation and Storage Options
$\checkmark$ Enable New Products, Services, and Markets
$\checkmark$ Provide Power Quality for the Digital Economy
$\checkmark$ Optimize Asset Utilization and Operate Efficiently
$\checkmark$ Anticipate and Respond to System Disturbances (Self-heal)
$\checkmark$ Operate Resiliently to Attack and Natural Disaster

## Smart Grid is Happening @ BPUD: AMI



$\checkmark$ Energy Use Data on Short Time Intervals<br>$\checkmark$ Remote Service Connection \& Disconnection<br>$\checkmark$ On-Demand Reads<br>$\checkmark$ Service Theft and Tamper Detection<br>$\checkmark$ Power Quality Monitoring<br>$\checkmark$ Outage Detection and Reporting

$\checkmark$ Enable Active Participation by Consumers
$\checkmark$ Customer Internet Access to Energy Use Data


## Smart Grid is Happening @ BPUD: SCADA

## SCADA - Increased Distribution "Visibility"

## - Control

> Measure
$>$ Protect

- Record
> Optimize



## Smart Grid is Happening @ BPUD: SCADA



## Voltage Regulator <br> SCADA Automation

Recloser (Circuit Breaker) SCADA Automation

## SCADA - Increased Distribution "Visibility"




## SCADA - Increased Distribution "Visibility"



## SCADA - Increased Distribution "Visibility"



## SCADA - Increased Distribution "Visibility"



## Transmission Reliability Improvement Projects "TRIP"




## Transmission System Analysis



Improved Planning and Coordination with BPA

## Transmission Switching Improvements

## Evaluate Existing Switches

- Transmission Switching is not a trivial matter $\checkmark$ Operator and Public Safety
$\checkmark$ Mechanical and Electrical condition is important
- Operational Requirements
> Circuit Interrupting Capabilities:
$\checkmark$ Line Dropping
$\checkmark$ Loop Breaking
$\checkmark$ Load Breaking



## Transmission Switching Improvements



## Add New Switches

$\checkmark$ Operational Flexibility
$\checkmark \quad$ Facilitates Transmission Line Maintenance
$\checkmark \quad$ Improves Outage Response and Reliability

## Transmission Projects \& Budgets

| Project Description | Project | Comments | Accounting Codes |  |  | Year (amounts in constant year dollars) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Dept | Res | FERC | 2017 | 2018 | 2019 | 2020 |
| BPA Interconnection - Leslie Road | 121357 | Joint w/ COR near Reata \& Leslie Rd. | 21 | 021 | 353.00 | 208,627 |  |  |  |
| BPA Interconnection - Southridge | 121359 | At BPA Franklin-Badger tower 12/3 | 21 | 021 | 353.00 |  |  | 600,000 |  |
| Transmission Line - Sunheaven\#2 to Prior \#4 | 124255 | River System (TRIP-A) - 8.5 mi ., 397.5 ACSR | 21 | total | varies | 549,008 |  |  |  |
| Transmission Line - Red Mountain to Reata | 124479 | Reata tie - w/City of Richland -6 mi. | 21 | total | varies | 200,000 | 1,200,000 |  |  |
| Transmission Line - Phillips to Spaw | 121360 | River System (TRIP-E,F) - 15.8 mi., 397.5 ACSR | 21 | tbd | 355.00 |  |  | 245,690 | 2,211,210 |
| Transmission Line - Mabton to Riverfront | tbd | Prosser tie - split 50/50 w/Benton REA - 10.2 mi . | 21 | tbd | 355.00 |  | 120,000 | 1,200,000 |  |
| Transmission Steel Pole - Kennedy Rd. | 124832 | Resolve easement issue and provide tap to Reata | 21 | total | varies |  |  |  |  |
| Switch Upgrade/Additions | tbd | \$31 K per switch | 21 | total | varies | 62,000 | 62,000 | 62,000 | 62,000 |
| Poles \& Fixtures, Misc repairs | n/a | Replace Poles/Davit Arms | 21 | total | varies | 15,000 | 15,000 | 15,000 | 15,000 |
| Misc |  | BPUD Labor \& Overheads |  |  |  | 52.121 |  |  |  |
| Transmission (Table 1) |  |  |  |  |  | \$ 1,086,756 | \$ 1,397,000 | \$ 2,122,690 | \$ 2,288,210 |

## Conclusions

District's Electrical System is well positioned to:

1) Meet continued incremental customer growth
> Distribution system keeping up with growth (Some Reata Area Challenges)
> Feeder capacity reserves are adequate for growth and contingencies
> Reata area needs additional substation capacity to meet expected growth rate

- Leslie Road Substation lease with City of Richland

2) Accommodate new large load interconnections and associated revenue growth opportunities
> Feeder and Substation Capacity Reserves available for "spot load" growth
> Need to improve coordination with local economic development entities
3) Meet customer expectations for a " $21^{\text {st }}$ Century Power Grid"
$>$ Smart Grid is Happening at Benton PUD
> Improved distribution visibility (AMI \& SCADA)

- Anticipate and respond more quickly to disturbances
- Optimize system operations and asset utilization
> 115-kV Transmission Loops
> Improved Transmission System Analysis and Planning
- Continue to work closely with BPA Operations and Planning to minimize outages

